DEC 1 4 2009 Class V Permit Application For an Asbestos Monofill at Mountain View Landfill Salt Lake City, Utah Prepared for Waste Management of Utah, Inc. December 2009 I hereby certify that I have reviewed this material and attest that this report has been prepared in accordance with good engineering practices. Engineer: Mark W Franc PE Signature: Registration Number: 178236(Utah) Date: 2009 14Dec 2009 # TABLE OF CONTENTS | 1 | INT | RODUCTION | .1 | |---|--------------|--|-----| | 2 | BAC | CKGROUND | .2 | | | 2.1 | DESCRIPTION | . 2 | | | 2.2 | SOIL CONDITIONS | . 2 | | | 2.3 | HYDROGEOLOGIC SETTING | .3 | | 3 | DES | IGN | .5 | | | 3.1 | Grading | | | | 3.1 | FINAL COVER DESIGN | | | | 3.2.1 | | | | | | P. Final Cover | | | | 3.3 | DRAINAGE | | | | 3.3. | | | | | 3.3.2 | | | | | 3.3.3 | B Hydrologic Analysis | . 7 | | | 3.3.4 | Drainage Improvements | . 7 | | | 3.4 | SEQUENCING | | | | 3.5 | ANTICIPATED SERVICE LIFE | . 8 | | 4 | OPI | ERATIONS PLAN | .9 | | | 4.1 | WASTE ACCEPTANCE | .9 | | | 4.2 | LANDFILL EQUIPMENT | | | | 4.3 | LANDFILL PERSONNEL | | | | 4.4 | TRAINING | 10 | | | 4.5 | SIGNAGE | 10 | | | 4.6 | WASTE INSPECTION PROCEDURES | | | | 4.7 | DISPOSAL PROCEDURES AND CONTINGENCY PLANS FOR FIRE OR EXPLOSION | | | | 4.8 | SURFACE WATER MANAGEMENT | | | | 4.9 | LITTER, ODOR, VECTOR, AND DUST CONTROL | | | | 4.10 | NOISE LEVELS | | | | 4.11
4.12 | EXPLOSIVE GAS MONITORING GROUNDWATER MONITORING | | | | 4.12 | SPILL PREVENTION | | | | 4.14 | RECORDKEEPING PROCEDURES | | | | 4.15 | SPECIAL OPERATING REQUIREMENTS FOR ASBESTOS CONTAINING MATERIALS | | | | 4.15 | • | | | | 4.15 | | | | | 4.15 | 11 0 1 | | | | 4.15 | 8 | | | | 4.15 | 8 1 | | | | 4.15 | .6 Disposal Standards | 13 | | 5 | CLO | SURE AND POST CLOSURE | 16 | | | 5.1 | CLOSURE | 16 | | | 5.1.1 | | | | | 5.1.2 | | | | | 5.1.3 | Grading | | | 5.1.4 | Drainage | | 16 | | | | | | | |---|---|-----------------------------------|----|--|--|--|--|--|--| | 5.1.5 | Closure Costs | | 16 | | | | | | | | 5.2 P | OST CLOSURE MAI | NTENANCE | 17 | | | | | | | | 5.2.1 | | | | | | | | | | | 5.2.2 | 5.1.5 Closure Costs 5.2 POST CLOSURE MAINTENANCE 5.2.1 Final Cover Integrity 5.2.2 Drainage System 5.2.3 Vegetative Cover 5.2.4 Groundwater Monitoring Network 5.2.5 Post-Closure Cost Estimate REFERENCES 1 Summary of Soils Laboratory Testing 2 SLVHD Regulations Cross Reference 3 Closure and Post Closure Estimate FIGURES 1 Site location Map 2 Vicinity Map 3 Groundwater Contour Map 4 Floodplain Map 5 Wetlands Map 6 Topographic Map 7 Cross Section Asbestos Monofill DRAWINGS 1 Final Grading and Drainage APPENDIX A Facility Records A-1 Permit Renewal Application | | | | | | | | | | e , | | | | | | | | | | | S C C C C C C C C C C C C C C C C C C C | | | | | | | | | | | 5.2.1 Final Cover Integrity 5.2.2 Drainage System | | | | | | | | | | | REFEREN | ICES | | 19 | MADA ESC | | | | | | | | | | | TABLES | | | | | | | | | | 1 | | | | | | | | | | | 2 | | | | | | | | | | | 3 | Closure and Post Closure Estimate | | | | | | | | | | | FIGURES | | | | | | | | | | 1 | Site location Map | | | | | | | | | | 2 | <u>-</u> | 4 | • | | | | | | | | | | DRAWINGS | | | | | | | | | | 1 | Final Grading and Drainage | | | | | | | | | | | APPENDIX | | | | | | | | | | A
B
C | • - | | | | | | | | | | | | | | | | | | | # 1 INTRODUCTION This report has been prepared as part of the Class V permit application requirements in accordance with UTAH SOLID WASTE PERMITTING AND MANAGEMENT RULES UTAH ADMINISTRATIVE CODE (R315-301 through 320) for the Mountain View Landfill (MVLF). Mountain View Landfill (MVLF) desires to obtain a Class V permit for a portion of the existing facility which is a currently permitted Class VI facility. This Class V permit will be for a small portion of the landfill and will be for the disposal of asbestos containing material (ACM). This report has been prepared in accordance with applicable Salt Lake Valley Health Department (SLVHD) and UDEQ Regulations. The permit application, and proof of ownership are included in Appendix A. The MVLF is shown on the site location map described as Figure 1 with the proposed ACM monofill location identified as Figure 6 & 7. In particular, this report discusses soils testing, final cover design, final grading and drainage, and the site operations. # 2 BACKGROUND MVLF (previously known as the Blandfill Landfill) is an existing construction and demolition waste landfill located at 6976 West California Avenue, Salt Lake City, Utah. The site is owned and operated by Mountainview Landfill, Inc. (MLI). MVLF also operates in accordance with Permit 35-017064 renewed by the SLVHD on January 1. 2009 and Conditional Use Permit #410-561 approved by the Salt Lake City Planning Commission on November 21, 2002. # 2.1 Description The landfill site consists of approximately 76 acres. MVLF is shown on the vicinity map included in this report as Figure 2. The landfill encompasses parcel #14-10-300-011, which is owned by MLI. The legal property description is: Beginning at a point on the north line of California Avenue (1300 South Street) said point being North 00°20'02" East 33.00 feet along quarter section line from the South quarter corner of Section 10, Township 1 South, Range 2 West, Salt Lake Base & Meridian and running thence North 00°20'02" East 1293.12 feet along said quarter Section line to quarter quarter Section line; Thence North 89°53'54" West 2596.31 feet along quarter quarter Section line to the East line of 7200 West Street; Thence South 00°40'16" West 1269.78 feet along said East line; Thence South 44°37'52" East 35.17 feet to said North line; Thence South 89°56'00" East 2578.93 feet to the point of beginning. Less and excepting the 100' wide Kennecott right of way described as follows: Beginning at a point on the East line of 7200 West Street, said point being North 00°40'16" East 1327.81 feet along Section line to quarter quarter Section line and South 89°53'54" East 55.00 feet along said quarter quarter section line and South 00°40'16" West 9.28 feet along said East line from the Southwest corner of Section 10, Township 1 South, Range 2 West, Salt Lake Base and Meridian and running thence South 00°40'16" West 101.49 feet along said East line; Thence North 80°50'46" East 688.67 feet to said quarter quarter Section line; Thence North 89°53'43" West 621.74 feet along said quarter quarter Section line; thence South 80°50'46" West 57.71 to the point of beginning Contains: 73.370 acres (3,326,687 square feet) net of the 100' wide Kennecott right of way The ultimate landfill footprint will cover the entire site minus 10-foot setbacks on the north and east sides and 30-foot setbacks for perimeter landscaping (plus additional space for permanent facilities) on the south and west sides. The landfill property is described as the South ½ of the Southwest ¼ of Section 10, Township 1 South, Range 2 West, in Salt Lake County, Utah. The landfill has been in operation since April 1985. The proposed ACM monofill is located within the legal property description of the MVLF and is shown on Figure 6&7. # 2.2 Soil Conditions MVLF is located immediately west of the Salt Lake Valley Landfill (SLVLF). MVLF's engineering consultant EMCON/OWT, Inc. (EMCON) previously performed an extensive investigation of subsurface conditions at SLVLF. Because of the proximity of the sites and consistency of local subsurface conditions, it was EMCON's opinion in the 1998 Design and Operation Plan that subsurface conditions at SLVLF are similar to subsurface conditions at MVLF. EMCON's previous work at SLVLF is documented in Salt Lake Valley Landfill Master Plan (EMCON, November 1991), which has been submitted to both the SLVHD and UDEQ. Based on EMCON's previous work at SLVLF, soils in the area are generally Holocene and Quaternary basin-fill deposits of the Jordan Valley consisting primarily of interbedded silty clays and silty sands. The sediments were deposited on the shore of an ancient lake in the area where streams flowed into the lake from the adjacent mountains. Saturated portions of these fluvio-lacustine sediments are reported to be between approximately 200 to 700 feet thick. Generally, there are three principal soil horizons beneath the site area, consisting of: 1) surface fine-grained layer; 2) intermediate silty sand horizon, and 3) lower sandy layer. The intermediate silty sand layer and lower sand layer are commonly separated by a clay horizon. The surface fine-grained layer, consisting of silt to clay soils, averages approximately 10 feet thick in the site area. The surface clay layer is punctuated locally by thin stringers of silty and clayey sand. These thin sand and silt stringers are locally saturated, but produce little water. Below the surface fine-grained layer, the intermediate horizon and lower sand layers consist of variably well-graded, silty and poorly graded sands, and gravel and gravely sands at depths from about 3 feet to about 30 feet below the ground surface. These shallow sands are typically water-saturated and form the principal shallow aquifer beneath the site. Groundwater beneath the site is
brackish with total dissolved solids in the range of 10,000 milligrams per liter. Shallow soil samples were obtained from undeveloped areas of the MLVF to obtain more information on the site specific subgrade conditions. Samples were also analyzed for ion-exchange capacity, pH, and metals content, consistent with SLVHD Regulations #1, Section 6.3(f). Testing confirmed that subgrade soils are generally silty clays with some clayey sands. Test results are summarized in Table 1 with data sheets included in Appendix B. Permeability and consolidation testing was also conducted on relatively undisturbed samples. The permeability of near surface soils, based on one sample, is 3.7×10^{-7} centimeters per second (cm/s), which is generally consistent with permeability test results for clay soils at the SLVLF. The compression index (C_c) was estimated to be 0.13 with a preconsolidation pressure of 9 kips per square foot. The values for C_c correspond well to data from the neighboring SLVLF and empirical equations based on Atterberg limits. Assuming a 10-foot-thick compressible clay layer beneath the landfill and relatively incompressible sand beneath that, estimated average foundation settlements due to maximum fill thickness is less than 6 inches and has been neglected in landfill capacity calculations. MVLF receives an average of 35,000 to 50,000 cubic yards of clean soil annually. Suitable soils are directed to separate stockpiles for future use as landfill final cover. Samples from the existing soil stockpiles were also obtained in March 1998 (SK1 through SK4) and in November 2004 (I, II and III). Stockpile samples vary from clayey gravel (GC) to silty clay (CL), but have very consistent Atterberg limits with plasticity limits ranging from 17 to 19 and liquid limits ranging from 27 to 31. The consistency of the Atterberg limits indicates MVLF site personnel have successfully identified suitable soils for final cover. # 2.3 Hydrogeologic Setting: Information on the hydrogeologic setting of MVLF, summarized from the 2005 Annual Ground Water Monitoring Report and 1998 Design and Operations Plan (Plan), is as follows: Soils in the area are generally Holocene and Quaternary basin-fill deposits of the Jordan Valley, consisting primarily of interbedded silty clays and silty sands. Three principal soil horizons occur beneath the site: 1) a surface fine-grained layer; 2) an intermediate silty sand layer; and 3) a lower sandy layer. The intermediate silty sand layer and lower sand layer usually are separated by a clay horizon. The surface fine-grained layer, consisting of silt and clay, averages approximately 10 feet thick in the site area. The layer locally contains thin stringers of silty and clayey sand, which are locally saturated but produce little water. The intermediate silty sand layer and lower sand layer consist of 'variably well-graded, silty and poorly-graded sands, and gravel and gravely sands, 'at depths between three and 30 feet below ground surface (bgs). These shallow sands typically are water-saturated and form the principal shallow aquifer beneath the site. Shallow groundwater occurs between about seven and 12 feet bgs as shown on Figure 3 from the 2009 Groundwater Monitoring Report. Total Dissolved Solids (TDS) concentrations typically are elevated, with concentrations in area wells of 10,000 milligrams per liter (mg/l) or higher. Groundwater gradients are very low beneath the MVLF, and flow direction can vary as a result of construction activities in the area. The Plan indicates that during earlier years of MVLF operation, groundwater flowed to the north, toward the Great Salt Lake. Following construction of borrow ponds adjacent to and southeast of the MVLF, groundwater flow direction changed to southward. Construction activities including ponds, stockpiling, and drainage ditches continue to influence local groundwater flow direction. Groundwater level maps for 1996, 1997, and 1998 indicate flow toward the south-southwest. Maps prepared since 1998 indicate flow toward the south-southeast. The change in flow direction from southwest to southeast after 1998 was attributed to construction of a drainage ditch to the east of the MVLF. The drainage ditch located east of MVLF appears to discharge into Lee Ditch, which is southeast of the MVLF. Lee Ditch appears to have been excavated to a depth comparable to the groundwater levels in MVLF wells, thereby intersecting the groundwater surface and, by allowing groundwater discharge, causing groundwater to flow eastward beneath MVLF toward the ditch. Ditch construction activity reportedly was completed before the 2000 monitoring. The groundwater flow direction and gradient are essentially unchanged since 1999. # 3 DESIGN The following sections discuss the final grading plan, final cover design, and provisions for drainage. # 3.1 Grading The landfill site is relatively flat with elevations ranging from about 4,215 to 4,220 feet mean sea level (MSL). As discussed in Section 2.2, the near-surface soil has a permeability of about 4×10^{-7} cm/s. Permeability of native clayey soils at the nearby SLVLF are on the order of 10^{-7} to 10^{-8} cm/s. No excavation occurs before waste is placed in the landfill. Wastes are placed on the native low-permeability soils. The native low-permeability soils serve as a low-permeability liner below the waste. Although the native low-permeability soils beneath the site would impede the downward movement of leachate within the existing landfill, no leachate has been detected. A liner and leachate collection system are not required for a Class V (Asbestos Monofill) landfill, such as MVLF. Accordingly, a liner or leachate collection system is not proposed for the future area at MVLF. However, the native low-permeability soils beneath the landfill serve as a natural low-permeability liner and provide waste containment. The landfill footprint will eventually cover most of the permitted 76 acre site. As shown on Drawing 1, the landfill footprint will cover approximately 74 acres. The footprint will be set back 10 feet along the north and east boundaries and 30 feet along the south and west boundaries. The proposed final elevation is 4,425 feet MSL with a minimum 50-foot-wide top deck, as shown on Drawing 1. The top deck will have minimum slope of 5 percent. The landfill sideslopes on the north and west will be 2:1 (horzontal:vertical) with 25-foot-wide- benches every 40 vertical feet. A pronounced swale along the south facing slope with a flatter slope of 3:1 has been added to provide more natural variation. A change in slope from 2:1 to 5:1 along the south and east slopes was added to improve the appearance of the ridgeline from the south. Two knolls have replaced the single peak from the 1998 Design and Operation Plan to reduce the pyramid shape. The total landfill air space (waste) is approximately 10.8 million cubic yards (cy). As of the most recent aerial topographic survey on April 20, 2009, approximately 9.4 million cubic yards (cy) of air space has been used since beginning operation in 1985. The site has a remaining capacity of 1.4 million cy. Based on an estimated annual air space usage of 200,000 tons, the landfill has a remaining life of approximately 7.5 years. The asbestos monofill is designed to consume approximately 50,000 cubic yards of the remaining landfill capacity. # 3.2 Final Cover Design # 3.2.1 Regulatory Requirements Regulations applicable to the MVLF final cover system are contained in UDEQ Solid Waste Permitting and Management Rules (R315-301 through 320) and the SLVHD's Health Regulations #1, Solid Waste Management Facilities. UDEQ Rule R315-302-3(2) requires that a landfill be closed in manner that (a) minimizes the need for further maintenance; - (b) minimizes or eliminates threats to human health and the environment from postclosure escape of solid waste constituents, leachate, landfill gases, contaminated run-off or waste decomposition products to the ground, ground water, surface water, or the atmosphere; and - (c) prepares the facility or unit for the postclosure period UDEQ Rule R315-305-(5) requires a Class VI landfill, such as MVLF to be closed by leveling the wastes to the extent practicable and placing a minimum of two feet of soil cover, including six inches of topsoil. The landfill cover may be seeded with grass, other shallow rooted vegetation or other native vegetation or covered in another manner approved by the Executive Director. SLVHD Regulations #1 requires a landfill to have a final cover consisting of a compacted layer of cover material, at least 24 inches thick, with the upper 6 inches of a soil composition suitable to sustain plant growth, and the lower portion of material that restricts infiltration to the equivalent of that achieved by 18 inches of low-permeability (1 x 10^{-5} cm/sec or less) soil. # 3.2.2 Final Cover The approved final cover consists of a two-foot-thick layer of soil that is an evaporative soil cover. These covers provide sufficient moisture storage so that the soil moisture can be removed by evaporation. Evaporative covers have been designed and constructed on many landfills in arid and semi-arid regions and effectively reduce infiltration without long-term performance concerns that may be associated with geosynthetic materials or compacted clay covers. The evaporative cover is designed to store moisture and allow for eventual evaporation and plant transpiration. Little moisture is released to flow into the waste and subgrade soils. The prescriptive standard has a lower moisture holding capacity so the soil barrier does little but to delay the inevitable infiltration into the waste. The semi-arid conditions of Salt Lake City, where evaporation well exceeds precipitation, are well suited for evaporative covers. Note that the landfill is currently in operation without a final cover, and groundwater monitoring has not identified groundwater
impacts. In addition to allowing less infiltration, the evaporative cover is much less susceptible to settlement and cracking than a compacted clay cover. # 3.3 Drainage # 3.3.1 Existing Site Conditions The area immediately east of the site is the Salt Lake Valley Landfill. North of the site is a wedge-shaped open area bounded by the northern landfill limits and an earth mound (abandoned rail road) traversing diagonally beginning at the northwest corner of the property. This open area creates additional contributory flow along the northern perimeter of the site. Drainage tributary to the south is minimal due to an existing ditch alongside West California Ave. West of the site is 7200 West and Lee Ditch where most of the site surface runoff will drain. # 3.3.2 Design Criteria The design criteria utilized for determining the surface water runoff is based on the 25-year, 24-hour duration storm event, as required by SLVHD. The proposed drainage system design is based on the final landfill grades shown on Drawing 1. # 3.3.3 Hydrologic Analysis The method used for determining storm runoff is based on Technical Release 55 (TR-55), Urban Hydrology for Small Watershed, published by the Natural Resource Conservation (NRCS). Runoff peak flows and storm hydrographs obtained from the hydrologic analysis are based on 25-year, 24-hour frequency storm event and presented in Appendix C **Precipitation.** Rainfall data from the nearest precipitation station (National Weather Service-Salt Lake City Station [SLCS] was used to simulate the storm event at the site. The estimated 25-year, 24-hour precipitation reported from the SLCS is 2.65 inches. **Rainfall Distribution.** TR-55 includes four synthetic 24-hour rainfall distributions developed by the NRCS representing various regions of the United States. Based on the geographical location of the site, Type II rainfall distribution was used in the analysis. Time of Concentration. The time of concentration (T_c) is the time for runoff to travel from the most hydraulically distant point in a drainage subarea to the collection point. Calculation for T_c consists of overland flow or sheet flow, shallow concentrated flow, and open channel flow, or some combination, to the collection point. The T_c calculated for the landfill drainage subareas range from 6 to 8 minutes, approximately 0.1 hour, which is the minimum time concentration allowed by the TR-55 computer program. Open channel flow time is calculated based on flow velocities obtained from Manning's equation. Overland flow time is determined based on the kinematics equation for sheet flow condition. Travel times for shallow concentrated and open channel flows were calculated based on flow velocities obtained from Manning's equation. Data input for the TR-55 computer analysis are presented in the hydrology calculations. An approximate T_c for the off-site drainage area was developed based on the topographic features on the US Geological Survey (USGS) map and open channel flow time along the northern perimeter of the site. Hydrologic Soil Group. Selection of runoff CNs are based on the hydrologic soil classification, cover type, hydrologic conditions, and antecedent moisture condition. The soils at the site are predominately silty clay loam classified under the Type C under the NRCS soil group system. Based on available soil information and land use, the CN values used for the analysis are as follows: | Area Description | CN | |-------------------------|----| | Landfill Top Deck | 86 | | Landfill Side Slope | 88 | | Perimeter / Access Road | 90 | | Undeveloped Area | 79 | # 3.3.4 Drainage Improvements Calculations shown in Appendix C support the following drainage structures. The proposed bench and downdrain system us designed to handle peak flows (25-year, 24-hour event) for the final closure condition. Benches and downdrains have been conservatively designed assuming that run-off is not conveyed into intermediated downdrains and is directed into downdrains on the western slope. Downdrains on the north and south slopes will actually convey some of the flow and convey water to the perimeter and natural drainage courses. Final improvements are shown on the drainage plan in Appendix C. Calculations included in Appendix C support the following improvements. Grass-lined Benches. Most of the flow will be collected from side slopes and conveyed via benches. Drop inlets along the benches will be used to convey surface flow to downdrain pipes. **Downdrains.** The downdrain system is designed to provide hydraulic capacity of intercepted run-off carried on the bench system. Drop inlets are included as part of the downdrain system. The high velocity flow (average of 30 fps) will be migrated through energy dissipaters or equivalent materials at the bottom of downdrains to minimize erosion. **Perimeter Drainage.** Water will be conveyed to the perimeter of the site and into natural drainage courses. The perimeter drainage system will carry some of the run-off and control some run-on. Culverts. Culverts have been constructed to convey water under 7200 West and California Avenue South to Lee Ditch. Flared end sections will intercept flow from ditches and downdrains. The site's point of discharge is the existing Lee Ditch. # 3.4 Sequencing The asbestos monofill will be constructed and filled adjacent to the MVL C&D fill sequencing. The location and elevation of the monofill is shown on Figure 6&7. Vertical lifts will be placed at a rate and thickness which will be based on waste receipt. The top lift elevation of the monofill will remain as close to the elevation of the surrounding C&D lift as possible. Soil Cover. Cover will consist of a total of two feet of soil. This material will be taken from on-site stockpiles of clean fill or if necessary, purchased from outside sources. Suitable soils (CL or SC) for the final cover will be determined from test parameters established. A quality assurance plan will be prepared to follow for cap construction. A final construction report for each segment of final cover completed will be submitted to the UDEQ and SLVHD. # 3.5 Anticipated Service Life The total landfill air space (waste) is approximately 10.8 million cubic yards (cy). As of the most recent aerial topographic survey on April 20, 2009, approximately 9.4 million cubic yards (cy) of air space has been used since beginning operation in 1985. The site has a remaining capacity of 1.4 million cy. Based on an estimated annual air space usage of 200,000 tons, the landfill has a remaining life of approximately 7.5 years. The asbestos monofill is designed to consume approximately 50,000 cubic yards of the remaining landfill capacity. Ongoing engineering reviews will be conducted to continue and monitor the remaining service life. # 4 OPERATIONS PLAN This operations plan has been prepared in fulfillment of SLVHD Health Regulations #1 Solid Waste Management Facilities and UDEQ regulations. Table 2 references the SLVHD Regulations with the applicable sections in this plan. # 4.1 Waste Acceptance Asbestos waste acceptance criteria will be based on the procedures described in Section 4.15 of this document. Operating hours of the facility may range from 6:00AM to 8:00PM. Hours of operation may change to accommodate customer cleanup projects or for other reasons. Relevant hours are posted at the site entrance. The Class V facility accepts asbestos containing material and is operated as an asbestos monofill. Solid wastes that are not accepted include, but are not liminted to, municipal solid waste, medical waste, putrescible waste, fluorescent electrical fixtures and transformers containing polychlorinated biphenyls, tires, drums, and containers with liquid or unrecognizable wastes, and fuel tanks. # 4.2 Landfill Equipment Landfill operations will be managed with the use of heavy construction equipment which currently includes the following: Bulldozer Compactor Rubber Tire Loader Scraper Water Truck In the event of equipment breakdown, or operational changes, other equipment may be used to manage disposal of wastes. Equipment on site will be provided with the following safety devices: - 1) Rollover protection devices - 2) Seat Belts - 3) Audible reverse warning devices - 4) Fire Extinguishers on all equipment used to manage solid waste or fill cover material - 5) Communication equipment Adequate equipment will be maintained at all times to ensure availability for proper management of the waste material and compliance with SLVHD Section 6.5(k). # 4.3 Landfill Personnel The number of site personnel will be adequate to ensure proper operations and management of the landfill. In addition, a member of management will be available during all hours of operation to handle emergency situations with facility communications equipment. Landfill Personnel include the following: Landfill District Manager – Patrick Craig 6976 West California Avenue Salt Lake City, Utah 84104 (801) 250-0555 Operations Manager Equipment Operators Gatehouse Personnel Traffic Directors Laborers, mechanics, and related support personnel will be provided as needed. Current operations require a staff of about four full-time employees during any given work shift. All employees will be required to wear the following at all times in the active areas on site: - 1) Hard Hat - 2) Gloves - 3) Safety Glasses - 4) Safety Footwear (Steel toe and steel shank) - 5) Safety Vests # 4.4 Training MVLF utilizes internal as well as external training opportunities, and conducts on-the-job training for new employees, and recurring training to refresh existing employees. Training is conducted on landfill operating procedures, equipment operations, identification and inspection of acceptable and unacceptable wastes, health and safety training, record keeping and reporting, and in related areas. A safety specialist assists in maintaining an updated Site Safety Manual and in instructing employees in the manual's
procedures, use of personal safety devices, and use of the protective features of equipment. Equipment operators especially are trained in fire protection, and the use of fire extinguishers, which are mounted on each piece of equipment. Employees are trained on all equipment that they are expected to use in the performance of their jobs. The goal of employee training is to ensure proper and safe operations for employees, and the public users of the site. # 4.5 Signage The landfill entrance gate area has existing signs that indicate the name, permit number, hours of use, penalty for unauthorized use, safety precautions, types of waste accepted and not accepted, and additional information. Signs are used as needed to direct traffic onto roads, control vehicle speed within the landfill, and to indicate unloading areas. The asbestos monofill area is screened by fencing or berms and posted with warning signs on all four sides. The wording "CAUTION ASBESTOS WASTE" or similar wording is printed on the signs with lettering at least three inches high. # 4.6 Waste Inspection Procedures . When vehicles loaded with waste materials arrive at the gate, they must stop at the gatehouse. The gatehouse attendant is trained in waste acceptance procedures. Through a series of questions, the gatehouse attendant determines the nature and general source of the waste materials. A video camera is mounted outside the gatehouse, positioned to allow the attendant to observe the load. A waste receipt ticket is filled out that identifies the account's name, time and date, load description, and the origin of the waste. If the load is deemed unacceptable, it is rejected, and not allowed to proceed into the landfill. A "Load Rejection Report", is completed by the landfill and provided to SLVHD for regulatory notification. Loads accepted for disposal are handled in accordance with section 4.15.6 of this document and are again inspected by the equipment operators at the working face. # 4.7 Disposal Procedures and Contingency Plans for Fire or Explosion No open burning will be conducted at any time. If a fire should ignite or explosion occurs, soil from designated stockpiles or other areas maintained near the disposal area will be used to cover any burning waste. The water truck may be used to spray water on the fire as necessary. At the same time that site personnel are responding to the fire, emergency response agencies such as the fire department will be called in to assist as needed. Verification of grades and elevations will be preformed by certified surveyors on an as needed basis. Typically, this occurs once a year when annual aerial topographic map is prepared. # 4.8 Surface Water Management Run-on and run-off will be controlled through use of berms, ditches, and erosion control efforts. Lee Ditch and Kersey Creek are the nearest surface water bodies and both feed the Great Salt Lake. The active portion of the landfill is maintained at a higher grade than surrounding areas and soil berms are constructed as necessary to direct surface water from the active portion of the landfill. The soil berms and grading techniques employed effectively isolate portion of the landfill where waste may be exposed. Surface water run-off from the facility is collected in a series of trenches constructed around the perimeter of the facility. These trenches convey surface water to unnamed surface water control ditches and Lee Creek located north and west of the property. MVLF manages stormwater consistent with the requirements of the General Industrial stormwater Discharge Permit. As required, a stormwater pollution prevention plan and stormwater monitoring plan have been prepared for MVLF. The limits of landfill are outside the 100-year flood plan as shown on Figure 4 available from Salt Lake County FEMA Database. The limits of landfill are also outside wetlands as depicted on Figure 5 from the National Wetlands Inventory Database. # 4.9 Litter, Odor, Vector, and Dust Control Temporary litter fencing will be deployed as needed to contain blowing paper and plastics. Litter will be cleaned up by laborers as needed to maintain a safe and orderly appearance. Prevailing winds are from the southwest. Odors are not expected, due to the inert nature of the waste. Placement of cover soil over certain types of waste also will act to control any odors. Disease vectors, rats, or flies are not expected to be an issue, due to the inert nature of waste. Dust will be controlled by watering. Water is pumped into the water truck from an onsite water well. If no water is available from the well an off-site water source will be used. A Fugitive Dust Control Plan reviewed by UDEQ is included in Appendix A-4. # 4.10 Noise Levels All on-site equipment is equipped with mufflers. Noise levels will be minimized to prevent levels beyond the property line exceeding allowable limits set forth in the SLVHD Regulations #1. # 4.11 Explosive Gas Monitoring Although C&D waste disposal sites generally do not generate significant amounts of explosive gas (landfill gas), a monitoring program will continue to be conducted. The monitoring program is in place to ensure that landfill gas, measured as methane, generated by the waste does not create a hazardous condition. Landfill personnel have been trained in the use and calibration of a methane detector for monitoring the surface of the landfill. Gas monitoring at MVLF was started in March 1997 and is performed quarterly by landfill personnel. The methane detector is recalibrated every quarter before monitoring and a minimum of two locations approximately thirty feet up the landfill slope, various locations at the top of landfill, the site buildings, and the corners of the fill are selected for monitoring each quarter. The results of the monitoring program are recorded on a Methane Monitoring Form and are kept on site. If gas levels do exceed 25 percent of the lower explosive limit (LEL) within any structure or the LEL at the landfill's property line, MVLF shall: - 1) Immediately take necessary steps to ensure the immediate protection of human health and safety; - 2) Immediately notify the SLVHD of the gas levels detected and the remediation steps which have already been taken; - 3) Within 14 days, submit to the SLVHD for approval an ongoing remediation plan for the gas accumulation. The plan will describe the nature and extent of the problem and the proposed remedy. The plan will be implemented upon approval of the SLVHD. # 4.12 Groundwater Monitoring Groundwater from five on-site monitoring wells is sampled annually and analyzed by a Utah Certified Laboratory. Groundwater monitoring since 1985 has not indicated any impact to groundwater from the disposal of waste at this site. A Groundwater Monitoring Plan dated August 2001 presents the groundwater monitoring program for MVLF. This plan incorporates monitoring elements approved by SLVHD to provide environmental protection during and after development. The plan further uses monitoring locations selected on the basis of hydrogeologic conditions to provide early detection of a potential release from the facility and corrective action programs to be initiated if groundwater is contaminated. # 4.13 Spill Prevention A spill prevention control and countermeasure plan has been prepared for MVLF. # 4.14 Recordkeeping Procedures The landfill will continue to maintain a site Operating Record that will be available for inspection by the SLVHD and UDEQ. The operating record will include at least the following information: - Amounts and types of waste accepted at the facility - Unacceptable waste notifications - Random load inspections - Survey information regarding the filled areas of the landfill - Groundwater and gas monitoring results - Training procedures and documentation of training - Site Facility Inspections (see Appendix A) # 4.15 Special Operating Requirements for Asbestos Containing Materials The site will operate in accordance with the SLVHD, UDEQ and USEPA requirements. # 4.15.1 Additional Operating Record Requirement. In accordance with SLVHD regulations, MVLF will keep an additional operating record containing the identity of persons who have disposed asbestos waste at the landfill and the amount of asbestos waste each person has disposed at the landfill. The documentation will consist copy of the non-hazardous waste manifest or Waste Shipment Record in accordance with 40 CFR 61.154 (e)(1). # 4.15.2 Asbestos Waste Separation From Existing Solid Waste Asbestos waste cells will not be located directly on top of existing solid waste. Prior to placing ACM over any area containing solid waste, the area will receive 2 feet of clean soil consistent with final cover. # 4.15.3 Location Mapping Requirement In accordance with SLVHD regulations, MVLF will provide to the SLVHD, and keep on file, a plat map showing the exact location of all asbestos disposal areas. # 4.15.4 Handling. Regulated asbestos-containing material to be disposed of in MVLF asbestos monofill shall be handled, transported, and disposed in a manner that will not permit the release of asbestos fibers into the air and must otherwise comply with Code of Federal Regulations, Title 40, Part 61, Section 154. # 4.15.5 Material and Containerizing Requirements. MVLF does not accept regulated asbestos-containing material unless the waste has been adequately wetted and containerized to meet UDEQ and SLVHD regulations including: - a. Regulated asbestos-containing material is adequately wetted when its moisture content prevents fiber release. - b. Regulated asbestos-containing material is properly containerized when it is placed in double plastic bags of 6-mil or thicker, sealed in such a way to be leak-proof and air-tight, and the amount of void space or air in the bags is minimized. Regulated asbestos-containing material slurries must be packaged in leak-proof and air-tight rigid containers if such slurries are too heavy for the plastic bag
containers. Upon submittal of a request, including documentation demonstrating safety, the Executive Secretary may authorize other proper methods of containment which may include double bagging, plastic-lined cardboard containers, plastic-lined metal containers, or the use of vacuum trucks for the transport of slurry. - c. MVLF requires that all containers holding regulated asbestoscontaining material be labeled with the name of the waste generator, the location where the waste was generated, and tagged with a warning label indicating that the containers hold regulated asbestos-containing material # 4.15.6 Disposal Standards. MVLF applys the following standards to the disposal of Regulated Asbestos-Containing Material; - a. Upon entering the disposal site, the transporter of the regulated asbestos-containing material must notify the scalehouse operator that the load contains regulated asbestos-containing material by presenting the waste shipment record. MVLF will verify quantities received, sign off on the waste shipment record, and send a copy of the waste shipment record to the generator within 30 days. - b. Upon receipt of the regulated asbestos-containing material, the MVLF inspects the loads to verify that the regulated asbestos-containing material is properly contained in leak-proof containers and labeled appropriately. MVLF will notify the Salt Lake Valley Health Department and the Utah Department of Environmental Quality Executive Secretary if it is believed that the regulated asbestos-containing material is in a condition that may cause fiber release during disposal. If the wastes are not properly containerized, and the load is accepted MVLF will thoroughly soak the regulated asbestos-containing material with a water spray prior to unloading, rinse out the truck, and immediately cover the regulated asbestos-containing material with material which prevents fiber release prior to compacting the regulated asbestos-containing material in the landfill. - c. During deposition and covering of the regulated asbestos-containing material, MVLF will: - i. prepare a separate area of the landfill (monofill) to receive the regulated asbestos-containing material - ii. assure asbestos waste is unloaded in a way that minimizes breaking of containers or bags. As necessary, MVLF may require the ACM hauler to notify the facility of the time and date the asbestos waste will be transported and the volume of asbestos to be disposed so that the facility operator can oversee the unloading. - iii. within 18 hours or at the end of the operating day completely cover the containerized regulated asbestos-containing material with sufficient care to avoid breaking the containers with a minimum of six inches of material containing no regulated asbestos-containing material. If the regulated asbestos-containing material is improperly containerized, it will be completely covered immediately with six inches of material containing no regulated asbestos-containing material; and - iv. cover all ACM daily with a cover material using material such as soil that is free of asbestos, debris or other objects that may puncture the asbestos containing bags or containers. Asbestos will be covered with two feet (61 centimeters) of cover material if equipment will be driven over the disposal area or site or six inches (15.2 centimeters) of cover material if equipment will not be driven over the disposal area. - d. MVLF will provide barriers adequate to control public access. MVLF will: - i. limit access to the regulated asbestos-containing material management site to no more than two entrances by gates that can be locked when left unattended and by fencing adequate to restrict access by the general public; and; - ii. place warning signs at the entrances and at intervals no greater than 330 feet along the perimeter of the sections where regulated asbestos-containing material is deposited that comply with the requirements of 40 CFR 61.154(b). # 5 CLOSURE AND POST CLOSURE This section describes the tasks involved for implementing closure and post-closure maintenance of MVLF. # 5.1 Closure This preliminary plan reviews sequencing cover design, grading, and discusses closure cost and financial assurance. # 5.1.1 Sequencing The landfill will be closed in stages as portions reach final grade. Areas will be closed after they reach final grade. A Quality Assurance Plan for construction of final cover will be prepared. Upon completion of each segment of final cover, a final construction report will be completed. # 5.1.2 Cover Design The approved final cover consists of a two-foot thick layer of soils. As discussed in Section 3.2, the approved meets the SLVHD Health Regulations and the UDEQ Regulations including: - Minimizing further maintenance - Minimizing threats to human health and the environment by minimizing infiltration - Preparing the facility for postclosure period The final cover will be vegetated to minimize erosion and maximize evapotranspiration. # 5.1.3 Grading Final grades are 2:1 with 25-foot-wide benches every 40 vertical feet. A pronounced swale along the south facing slope with a flatter slope of 3:1 has been added to provide more natural variation. A change in slope from 2:1 to 5:1 along the south and east slopes is intended to improve the appearance of the ridgeline from the south. Two knolls have replaced the single peak to reduce the pyramid shape. The final elevation is about 4,425 feet MSL. Benches intercept surface water and generally slope to the west. # 5.1.4 Drainage Run-off is controlled by a system of drainage benches and downdrains as discussed in Section 3.4.4. Drainage improvements include: • Culverts to convey water to Lee Ditch The system has been designed for peak flows from the 25-year, 24-hour storm. # 5.1.5 Closure Costs Financial assurance is based on a worst-case closure area. Worst-case closure costs includes two feet of cover soil, ditch and bench grading, and vegetation. The estimated worst-case closure costs are summarized in Table 3. The costs include final features, such as downdrains and culverts, shown on the Final Grading and Drainage Plan (Drawing 1). #### 5.2 Post Closure Maintenance yti į The post closure maintenance plan describes the tasks necessary to implement the post closure maintenance requirements. The plan includes: - Monitoring and control systems operating during the post-closure maintenance period - Inspection and maintenance procedures for the closed landfill - Emergency response plan - Estimated post-closure maintenance costs # 5.2.1 Final Cover Integrity This program will involve making repairs to the cover as necessary to correct the effects of settling, subsidence, erosion, and other events. A post-closure maintenance program will be instituted at the landfill to verify that the final cover retains its integrity. The final cover areas will be routinely evaluated and inspected for: - Evidence of erosion - Ponded water - Odor - Exposed refuse - Cracks - Settlement - Slope failure - Leachate seeps Cracks in the final cover will be repaired. Any erosion damage, which may occur as a result of extremely heavy rainfall, will be repaired. Temporary berms, ditches, and straw mulch will be used as needed to prevent further erosion damage to soil cover areas until site conditions permit replacement of eroded soil and reseeding of vegetation. # 5.2.2 Drainage System Drainage control problems can result in accelerated erosion of a particular area within the landfill. Differential settling of drainage control structures can limit their usefulness and may result in failure to direct storm water properly of the site. A post-closure maintenance program will be implemented so that the integrity of the final drainage system is maintained throughout the post-closure maintenance period. The final drainage system will be routinely evaluated and inspected for ponded water, and blockage of and damage to drainage structures. In areas where erosion problems are noted or drainage control structures need to be repaired, proper maintenance procedures will be implemented to prevent further damage. Inspections and any maintenance will be conducted by landfill personnel. # 5.2.3 Vegetative Cover The condition of vegetation will be monitored semi-annually. Inspections will identify areas of irregular color or growth deficiency. During future inspections, the spread of these conditions will be noted. # 5.2.4 Groundwater Monitoring Network The groundwater monitoring system will remain in service throughout the closure and post-closure periods. Upon determination by local, state, and federal agencies that groundwater monitoring is no longer necessary, the system will be decommissioned. The wells will be decommissioned consistent with applicable local and state regulations. Groundwater monitoring wells will be inspected for signs of failure or deterioration during each sampling event. If damage is discovered, the nature and extent of the problem will be recorded. A decision will be made to repair or replace the well. (Possible repairs include redevelopment, chemical treatment, partial casing replacement or repair, resealing of the annulus, or pumping and testing.) If a well needs to be replaced, it will be properly decommissioned well destruction. Inspections and maintenance will be performed by landfill personnel. # 5.2.5 Post-Closure Cost Estimate The post-closure maintenance cost estimate shown in Table 3 was prepared based on the post-closure maintenance plan presented in this section. The post-closure maintenance cost estimate includes the cost of materials, equipment, labor, and administration. The post-closure maintenance costs are assumed to continue for at least 30 years after closure. The estimated total post-closure maintenance costs are summarized in Table 3. # REFERENCES AquAeTer. December 2009. Groundwater Monitoring Report for Mountain View Landfill. AquAeTer. August 2001. Groundwater Monitoring Plan for
Mountain View Landfill. EMCON Associates. June 11, 1998. Design and Operations Plan, Blandfill Landfill. EMCON Associates. November 1991. Salt Lake Valley Master Plan. Prepared for Salt Lake Valley Waste Management Council. Project 344-02.01. Natural Resource Conservation Service Technical Release 55. Urban Hydrology for Small Watersheds. Mountain View Landfill. March 2009. Spill Prevention and Countermeasure Plan. Mountain View Landfill. June 2009. Stormwater Pollution Prevention Plan and Stormwater Pollution Prevention Permit UTR000533. National Wetland Inventory. U.S. Fish and Wildlife Service (www.nwi.fws.gov) Pipe Culvert analysis computer Program. Version 1.7 Copyright © 1986. Dodson & Associates Salt Lake County Engineering & Flood Control. (www.slco.org/pn/eng/flood/html/fplains.html) Salt Lake Valley Health Department Regulations #1, Solid Waste Management Facilities. Siegel, R.A.August 2001. Groundwater Monitoring Plan for Mountain View Landfill 1975. STABL User Manual. Purdue University, Joint Highway Research Project JHRP-75-9 Utah Department of Environmental Quality Solid Waste Permitting and Management Rules, R315-301 to 320 Tables Table 1 Summary of Soils Laboratory Testing Table 1 **Summary of Soils Laboratory Testing** | Summary of Soils Laboratory Testing | | | | | Grain Size | | Atterberg Limits | | tion Test
I 1557) | Permeability Test | | |-------------------------------------|---------------------------|------------------------|----------------------------|------------------------------|--------------------------------|-------------------------|-----------------------------|------------------------------------|---------------------------------------|-----------------------|--| | Sample
Number | Dry
Inplace
Density | USCS
Classification | Moisture
Content
(%) | Percent
Passing
#4 (%) | Percent
Passing
#200 (%) | Liquid
Limit
(LL) | Plasticity
Limit
(PL) | Maximum
Dry
Density
(pcf) | Optimum
Moisture
Content
(%) | Remolding
Criteria | Coefficient of
Permeability
k (cm/sec) | | a. Bucket 2 | | SC | 22.5 | 80 | 48 | 27 | 18 | | | | | | b. Bucket 3 | | CL | 28.1 | 96 | 84 | 38 | 20 | | | | | | c. Bucket 4 | 1 | CL | 30.3 | 100 | 96 | 44 | 22 | | | ± | | | d. Bucket SK1 | | SC | 21.7 | 81 | 47 | 29 | 18 | | | .* | , | | e. Bucket SK2 | | SC | 16.6 | 77 | 44 | 28 | 17 | 124.0 | 9.5 | | | | f. Bucket SK3 | | CL | 25.6 | 92 | 68 | 31 | 19 | | | | | | g. Bucket SK4 | | GC | 19.0 | 64 | 32 | 27 | 17 | 127.3 | 7.8 | 90%RC@OMC+2 | 5.00E-06 | | h. Core#1 | 92.1 | CL | 28.3 | | | | | | | | | | i. Core #2 | | | 17.9 | | | | | | | | | | j. Core #3 | 89.7 | CL or SC | 28.3 | | | | | | | | | | k. Core #4 | 84.8 | CL | 33.9 | - | | | - | | | - | 3.70E-07 | | l. Sample #I | 104.7 | SC | 17.8 | 83.8 | 46.6 | 26 | 18 | 116.7 | 13.5 | | | | m. Sample #2 | 102.6 | CL | 13.6 | 85.6 | 54.9 | 27 | 18 | 114.5 | 14 | | | | n. Sample #3 | 106.7 | SC | 14.1 | 81.3 | 46.0 | 25 | 17 | 118.7 | 12.5 | | | NOTE: Samples were sent to EMCON/OWT, Inc.'s Soil Lab. Samples a-k were sampled in March 1998and samples 1-n were sampled in November 2004. Core samples have slightly higher moisture and are probably more accurate. RC = relative compaction **OMC** = optimum moisture content # Table 2 SLVHD Regulations Cross Reference Table 2 SLVHD Regulations Cross Reference | County
Regulation | Description | Operations
Plan Section | |----------------------|---|----------------------------| | 6.1 | Restricted siting locations | N/A | | 6.2 | Department approval and bond requirements | N/A | | 6.3 | Report and approval requirements for permit | N/A | | 6.4 | Plan Approval | N/A | | 6.5 | Minimum design and operating requirements | See Below | | 6.5.a | Verification of acceptable incoming waste | 4.1 | | 6.5.a.1 | Inspection of at least 10 percent of incoming loads | 4.6 | | 6.5.a.2 | Inspection of all suspicious loads | 4.6 | | 6.5.a.3 | Keeping of records of inspections | 4.6 | | 6.5. a .4 | Training of personnel to recognize unauthorized waste | 4.4 | | 6.5. a .5 | Notification of department solid waste not accepted into site | 4.6 | | 6.5.b | Shall not accept any hazardous or liquid waste | 4.1 | | 6.5.c | Health and safety of individuals | 4.4 | | 6.5.c.1 | Safety manual | 4.4 | | 6.5.c.2 | Personal safety devices | 4.3, 4.4 | | 6.5.c.3 | Safety manual | 4.2, 4.4 | | 6.5.c.4 | Communication equipment for emergency situations | 4.3 | | 6.5. d | Qualified personnel during all hours of operation | 4.4 | | 6.5.e | Control of public access | 4.5 | | 6.5.f | Signage | 4.5 | | 6.5.g | Record keeping | 4.14 | | 6.5.h | Vector, dust, and odor control | 4.9 | | · 6.5.I | Passability of on-site roads | 4.5 | | 6.5.j | Designated areas for offloading | 4.7 | | 6.5.k | Available equipment for trenching, compaction and covering | 4.2 | | 6.5.1 | Liner system | 3.1 | | 6.5.m | Minimization of working waste face | 4.7 | | 6.5.n | Daily cover | 4.7 | | 6.5.o | Salvaging | 4.7 | | 6.5.p | Noise levels | 4.10 | | 6.5. q | Open burning | 4.7 | | 6.5.r | Leachate collection | 3.1 | | 6.5.s | Waste not deposited on surface water or in groundwater | 4.8 | | 6.5.t | Surface water run-off and run-on control | 4.8 | | 6.6 | Methane monitoring requirements | 4.11 | | 6.7 | Groundwater and surface water monitoring requirements | 4.12 | Table 3 Closure and Post Closure Estimate TABLE 3 # **Mountain View Landfill** # Worst Case Closure and Post-Closure Maintenance and Care **Financial Assurance Cost Estimate** November-09 Inflation Factor 1.0214 # **Worst Case Exit Closure Cost** | Description | Units | Prior Year
Unit Cost | Updated
Unit Cost | Quantity | Prior Year Cost | Updated Cost | |---|-------|-------------------------|----------------------|----------------|-----------------|--------------------| | Final Cap Construction – <u>63 Acres</u> | | | | | | | | Contractor Mob/demob | EA | \$21,187.00 | \$21,640.40 | 1 | \$21,187.00 | \$21,640.40 | | 24-inch Cover material (purchase/place/compact) | CY | \$5.30 | \$5.41 | 203280 | \$1,076,723.38 | \$1,099,765.26 | | Hydroseeding | | \$529.68 | \$541.01 | 63 | \$33,369.53 | \$34,083.63 | | Grading - Ditches & Swales | ACRE | \$13.24 | \$13.53 | 6400 | \$84,748.00 | \$86,561.61 | | Surveys | LF | \$3,707.73 | \$3,787.07 | 1 | \$3,707.73 | \$3,787.07 | | QA/QC and soils testing | LS | \$2,648.38 | \$2,705.05 | 63 | \$166,847.63 | \$170,418.17 | | Closure Report and Certification | ACRE | \$10,593.50 | \$10,820.20 | 1 | \$10,593.50 | \$10,820.20 | | Deed/Records Filing | EA | \$2,648.38 | \$2,705.05 | 1 | \$2,648.38 | \$2,705.05 | | Building/Facilities Demobilization | EA | \$26,483.75 | \$27,050.50 | 1 | \$26,483.75 | \$27,050.50 | | Fencing and Site Security | EA | \$5,296.75 | \$5,410.10 | 1 | \$5,296.75 | \$ 5,410.10 | | | | To | otal Exit Closur | e Site Costs = | \$1,431,605.64 | \$1,462,242.00 | #### Notes: - Worst case closure assumes 63 acres of final cap to build at closure or at an intermediate closure condition. - Final cap consists of 24-inches of CL or SC soils as determined by ASTM and seeded with native grass seed. - Soils for final cover obtained from on-site stockpiles. # Annual Boot Closure Maintenance & Care Cost | Description | Units | Prior Year
Unit Cost | Updated
Unit Cost | Annual
Quantity | Prior Year
Annual Cost | Updated Cost | |---|------------|-------------------------|----------------------|--------------------|---------------------------|----------------| | Site Maintenance | | | | | | | | . Misc. Grading and repair of final cap | HR | \$132.42 | \$135.25 | 40 | \$5,296.75 | \$5,410.10 | | Reseeding and fertilizing of final cap | ACRE | \$953.42 | \$973.82 | 1 | \$953.42 | \$973.8 | | Mowing and weed control | ACRE | \$132.42 | \$135.25 | 63 | \$8,342.38 | \$8,520.9 | | Drainage repair/maintenance | HR | \$132.42 | \$135.25 | 20 | \$2,648.38 | \$2,705.0 | | Miscellaneous maintenance | HR | \$47.67 | \$48.69 | 20 | \$953.42 | \$973.8 | | Monitoring | | | | | | , | | Annual inspections & report | HR | \$90.04 | \$91.97 | 40 | \$3,601.79 | \$3,678.8 | | Groundwater sampling | HR | \$72.04 | \$73.58 | 40 | \$2,881.43 | \$2,943.09 | | Groundwater sample analyses | EA | \$317.81 | \$324.61 | 7 | \$2,224.64 | \$2,272.24 | | Annual reporting | HR | \$84.75 | \$86.56 | 20 | \$1,694.96 | \$1,731.2 | | Annual surface water sampling | HR | \$63,56 | \$64.92 | 20 | \$1,271.22 | \$1,298.42 | | Surface water sample analyses | EA | \$15.89 | \$16.23 | 4 | \$63.56 | \$64.92 | | Annual reporting | HR | \$90.04 | \$91.97 | 20 | \$1,800.90 | \$1,839.43 | | Landfill gas monitoring | HR | \$47.67 | \$48.69 | 24 | \$1,144.10 | \$1,168.58 | | lr | itial Annu | al Post-Closure | Care & Mainten | ance Costs = | \$32,876.93 | \$33,580.4 | | | Post-C | losure Care & l | Maintenance Per | riod (Years) = | 30 | | | 30-Year Total Post-Close | ıre Care 8 | k Maintenance | Costs (inflatio | n adjusted) = | \$986,307.85 | \$1,007,414.84 | Notes: - Post-Closure assumes a 30-year post-closure period as required by Health Regulation 1, Section 6.9(f) on the completed landfill footprint of 68 acres. - 2. A total of seven groundwater sample points (five wells, one field duplicate and one trip blank) are sampled annually for constituents listed in Mountain View Landfili Groundwater Monitoring Plan dated August 2001. - 3. Surface water monitoring occurs quarterly. | Prior Yes | r = \$2,417,913.50 | |---|--------------------| | Total Required Financial Assurance Bond Amoun | = \$2,469,656.85 | Figure 1 Site Location Map Figure 2 Vicinity Map # Figure 3 Groundwater Contour Map Figure 4 Floodplain Map Figure 5 Wetlands Map Figure 6 Topographic Map SCALE IN PEET **WASTE**
MANAGEMENT 6 # Figure 7 Cross Section Asbestos Monofill Profile 1 - 1a | LINE | SURFACE | OFFSET | |------|---|----------------------------| | | Mountain View Proposed Asbestos
Mount View Exist 20090420
Mtn View Finel Cover Grades | 6.8668
6666.9
6666.6 | | | Scaled 1.0000 Times Ver.
Scaled 1.0000 Times Hor. | | Profile 2 - 2a | LINE | SURFACE | OFFSET | |------|---|----------------------------| | | Mountain View Proposed Asbestos
Mount View Exist 20090420
Mtn View Final Cover Grades | 9699.5
9699.5
9689.6 | | | Scaled 1.0000 Times Ver.
Scaled 1.0000 Times Hor. | | | | | | | | | |--------|------------|----------------|---|---|----| | | | | | | _ | | REV | DATE | | DESCRIPTION | DES BY APP I | 81 | | PROJE | C7 NO. 1 | | WASTE MANAGEMENT OF UTAH, INC
MOUNTAIN VIEW LANDFILL | ¢. | | | DATE 1 | DECEMBER 8 | 2009 | SALT LAKE UTAH | | | | DES 8 | * | | ACDECTOC | DICDOCAL | | | DRM 1 | BY DLH | | ASBESTOS | DISTUSAL | | | CHK 8 |)Y 16F | | AREA CROS | S SECTIONS | 3 | | APP 8 | ¥ \$0 | | AILA CITOS | • | ۷_ | | 1.0 | DO M | 1 | 4 | FIGURE_NO | | | | W | $N^{M}\Lambda$ | WASTE MANAGEMENT | 7 | | Drawing 1 Final Grade Drainage # Appendix A Facility Records ## Pērmit Renewal Application / 🔹 #### Utah Class I and V Landfill Permit Application Form ## **Utah Division of Solid and Hazardous Waste Solid Waste Management Program** Mailing Address P.O Box 144880 Salt Lake City, Utah 84114-4880 Office Location 288 North 1460 West Salt Lake City, Utah 84116 Phone (801) 538-6170 Fax (801) 538-6715 www.deq.utah.gov #### APPLICATION FOR A PERMIT TO OPERATE A CLASS I OR CLASS V LANDFILL Please read the instructions that are found in the document, INSTRUCTIONS FOR APPLICATION FOR A PERMIT TO OPERATE A CLASS I OR CLASS V LANDFILL. This application form shall be used for all Class I or V solid waste disposal facility permits and modifications. Part I GENERAL INFORMATION must accompany a permit application. Part II, APPLICATION CHECKLIST, is provided to assist applicants and, if included with the application, will assist review. Part II is provided to assist in preparation and review of a permit application, it is not rule. The text of the rule governs all permit application contents and should be consulted when questions arise. **Please note** the version date of this form found on the lower right of the page; if you have received this form more than six months after this date it is recommended you contact our office at (801) 538-6170 to determine if this form is still current. When completed, please return this form and support documents, forms, drawings, and maps to: Dennis R. Downs, Director Division of Solid and Hazardous Waste Utah Department of Environmental Quality PO Box 144880 Salt Lake City, Utah 84114-4880 (Note: When the application is determined to be complete, submittal of two copies of the complete application will be required.) ## Utah Class I and V Landfill Permit Application Form | t / General Information APPLICANT: PI | EASE COMPL | ETE ALL SECTIONS. | | |--|------------|---|---------------------------------| | <i>I.</i> Landfill Type ☐ Class I ☐ Class V | ation Type | New ApplicationRenewal Application | Facility Expansion Modification | | For Renewal Applications, Facility Expansion Applications ar | | | | | III. Facility Name and Location | | | | | Legal Name of Facility Mountain View Landfill | | × | | | Site Address (street or directions to site) 6976 West California Avenue | | | County
Salt Lake | | City Salt Lake City | State UT | Zip Code 84104 | Telephone 801-250-0555 | | Township 1 S Range 2 W Section(s) 10 | C | uarter/Quarter Section S1/ | 2 Quarter Section SW | | Main Gate Latitude degrees 40 minutes 44 | seconds 25 | Longitude degrees 11 | 2 minutes 3 seconds 14 | | /V. Facility Owner(s) Information | | | | | Legal Name of Facility Owner Mountainview Landfill, Inc. Address (mailing) | | | | | 6976 West California Avenue | T | | | | City Salt Lake City | State UT | Zip Code 84104 | Telephone 801-250-0555 | | V. Facility Operator(s) Information | | | | | Legal Name of Facility Operator Same as IV | | | | | Address (mailing) | | | | | City | State | Zip Code | Telephone | | VI. Property Owner(s) Information | | | | | Legal Name of Property Owner
Same as IV | | · - | | | Address (mailing) | | | | | City | State | Zip Code | Telephone | | VII. Contact Information # # # | | | | | Owner Contact Steve Derus | | Title Director of Landfill | | | Address (mailing)
5500 South Quebec St., Suite 250 | | | | | City Greenwood Village | State CO | Zip Code 80111 | Telephone 303-486-6040 | | Email Address sderus@wm.com | | Alternative Telephone (cell or or | ther) | | Operator Contact Patrick A. Craig | | Title District Manager | | | Address (mailing)
6976 West California Avenue | | | | | City Salt Lake City | State UT | Zip Code 84104 | Telephone 801-250-0555 | | Email Address pcraig2@wm.com | | Alternative Telephone (cell or of | iher) | | Property Owner Contact Same as Owner | | Title | | | | | | | | ress (mailing) | | | | | ress (mailing) City | State | Zip Code | Telephone | Utah Class I and V Landfill Permit Application Form | Part General Information (Continued) | " T OTTILE 7 CP NOCECOTT OTTI | | |--|--|---| | | IV Facility Associated | | | VIII. Waste Types (check all that apply) □ All non-bazardous solid waste (see R315-315-7(3) for PCR special | IX. Facility Area | _ | | All non-hazardous solid waste (see R315-315-7(3) for PCB special irements) OR the following specific waste types: | Facility Areaacres | | | ste Type Combined Disposal Unit Monofill Unit | Disposal Areaacres | | | | Dioposul Arcu. | | | ☐ Municipal Waste ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ | Design Capacity | | | ☐ Industrial ☐ | Years | | | ☐ Construction & Demolition ☐ ☐ Industrial ☐ ☐ Incinerator Ash ☐ ☐ Animals ☐ | | | | ☐ Incinerator Ash ☐ ☐ Animals ☐ ☒ Asbestos ☒ | Cubic Yards <u>50,000</u> | | | ☑ Asbestos ☐ ☐ PCB's (R315-315-7(3) only) ☐ ☐ Other ☐ | | | | ☐ Other ☐ | Tons | | | | | | | X. Fee and Application Documents | | | | Indicate Documents Attached To This Application | plication Fee: Amount \$ Class V Special Requirements | | | | | | | ☑ Facility Map or Maps ☑ Facility Legal Description ☐ Plan of Op ☑ Ground Water Report ☑ Closure Design ☐ Cost Estin | | | | | | - | | I HEREBY CERTIFY THAT THIS INFORMATION AND ALL AT | | | | Signature of Authorized Owner Representative | Title Director of Landfill Date | | | In which | Operations /2/11/07 | | | | Address 5500 S. Quebec Street, Greenwood Village, CO 80111 | | | Steve Depus | | | | Name typed or printed | | _ | | Signature of Authorized Land Owner Representative (if applicable) | Title Date | | | ** | · 1 | | | | Address | _ | | | | | | Name typed or printed | | | | Signature of Authorized Operator Representative (if applicable) | Title Date | | | | | | | | Address | | | | | | | Name typed or printed | <u>:</u> | | **Important Note:** The following checklist is for the permit application and addresses only the requirements of the Division of Solid and Hazardous Waste. Other federal, state, or local agencies may have requirements that the facility must meet. The applicant is responsible to be informed of, and meet, any applicable requirements. Examples of these requirements may include obtaining a conditional use permit, a business license, or a storm water permit. The applicant is reminded that obtaining a permit under the *Solid Waste Permitting and Management Rules* does not exempt the facility from these other requirements. An application for a permit to construct and operate a landfill is the documentation that the landfill will be located, designed, constructed, operated, and closed in compliance with the requirements of Rules R315-302, R315-303, R315-308, R315-309, and R315-315 of the *Utah Solid Waste Permitting and Management Rules* and the *Utah Solid and Hazardous Waste Act* (UCA 19-6-101 through 123). The application should be written to be understandable by regulatory agencies, landfill operators, and the general public. The application should also be written so that the landfill operator, after reading it, will be able to operate the landfill according to the requirements with a minimum of additional training. Copies of the Solid Waste Permitting and Management Rules, the Utah Solid and Hazardous Waste Act, along with many other useful guidance documents can be obtained by contacting the Division of Solid and Hazardous Waste at 801-538-6170. Most of these documents are available on the Division's web page at www.hazardouswaste.utah.gov. Guidance documents can be found at the solid waste section portion of the web page. When the application is determined to be complete, the original complete application and one copy of the complete application are required along with an electronic copy. #### Part II Application Checklist | I. Facility General Information | <u>. </u> | |---|--| | Description of Item | Location In
Document | | la. Information Required - All Class I and V Landfills | 7. | | Completed Part I General information Form (See form above) | | | General
description of the facility (R315-310-3(1)(b)) | | | Legal description of property (R315-310-3(1)(c)) | | | Proof of ownership, lease agreement, or other mechanism (R315-310-3(1)(c)) | | | Area served by the facility including population (R315-310-3(1)(d)) | | | If the permit application is for a class I landfill a demonstration that the landfill is not a commercial facility | | | Waste type and anticipated daily volume (R315-310-3(1)(d)) | | | Ib. Information Required - All New Or Laterally Expanding Class I and V Landfills | | | Intended schedule of construction (R315-302-2(2)(a)) | | | Name and address of all property owners within 1000 feet of the facility boundary (R315-310-3(2)(i)) | | | Documentation that a notice of intent to apply for a permit has been sent to all property owners listed above (R315-310-3(2)(ii)) | | | Name of the local government with jurisdiction over the facility site (R315-310-3(2)(iii)) | | | /. Facility General Information | | allı bişi | |--|---|------------------| | Description of Item | L | tion In
ument | | Ic. Location Standards - All New Or Laterally Expanding Class I and V Landfills (R315-302-1) | | | | Documentation that the facility has meet the historical survey requirement of R315-302-1(2)(f) | | | | Land use compatibility | | | | Maps showing the existing land use, topography, residences, parks, monuments, recreation areas or wilderness areas within 1000 feet of the site boundary | | | | Certifications that no ecologically or scientifically significant areas or endangered species are present in site area | | | | List of airports within five miles of facility and distance to each | | | | Geology | | | | Geologic maps showing significant geologic features, faults, and unstable areas | | | | Maps showing site soils | | | | Surface water | | | | Magnitude of 24 hour 25 year and 100 year storm events | | | | Average annual rainfall | | | | Maximum elevation of flood waters proximate to the facility | | | | Maximum elevation of flood water from 100 year flood for waters proximate to the facility | | | | Wetlands | | | | Ground water | | _ | | Id. Plan of Operations Requirements - All Class I And V Landfills (R315-310-3(1)(e) and R315-302-2(2)) | | | | Forms and other information as required in R3315-302-2(3) including a description of on-site waste handling procedures and an example of the form that will be used to record the weights or volumes of waste received (R315-302-2(2)(b) And R315-310-3(1)(f)) | | | | Schedule for conducting inspections and monitoring, and examples of the forms that will be used to record the results of the inspections and monitoring (R315-302-2(2)(c), R315-302-2(5)(a), and R315-310-3(1)(g)) | | | | Contingency plans in the event of a fire or explosion (R315-302-2(2)(d)) | | | | Corrective action programs to be initiated if ground water is contaminated (R315-302-2(2)(e)) | | | | Contingency plans for other releases, e.g. explosive gases or failure of run-off collection system (R315-302-2(2)(f)) | | | | Plan to control fugitive dust generated from roads, construction, general operations, and covering the waste (R315-302-2(2)(g)) | | | | 1. Facility General Information | | |--|----------------------| | Description of Item (# 1997) ** ** ** ** ** ** ** ** ** ** ** ** ** | Location In Document | | Plan for letter control and collection (R315-302-2(2)(h)) | | | Description of maintenance of installed equipment (R315-302-2(2)(i)) | | | Procedures for excluding the receipt of prohibited hazardous or PCB containing wastes (R315-302-2(2)(j)) | | | Procedures for controlling disease vectors (R315-302-2(2)(k)) | | | A plan for alternative waste handling (R315-302-2(2)(I)) | | | A general training and safety plan for site operations (R315-302-2(2)(o)) | | | Any recycling programs planned at the facility (R315-303-4(6)) | | | Closure and post-closure care Plan (R315-302-2(2)(m)) | | | Procedures for the handling of special wastes (R315-315) | | | Plans and operation procedures to minimize liquids (R315-303-3(1)(a) and (b)) | | | Plans and procedures to address the requirements of R315-303-3(7)(c) through (i) and R315-303-4 | | | Any other site specific information pertaining to the plan of operation required by the Executive Secretary (R315-302-2(2)(p)) | | | Ie. Special Requirements - New Or Laterally Expanding Class V Landfill (R315-310-3(2)) | | | Submit information required by the <i>Utah Solid and Hazardous Waste Act</i> Subsections 19-6-108(9) and 19-6-108(10) (R315-310-3(2)(a)) | | | Approval from the local government within which the solid waste facility sits | ··· | | // Facility Technical Information | i i display | | - 4 | |--|-------------|----------------|---------------| | Description of Item | | Locatio
Doc | n In
ument | | Ila. Maps - All Class I and V Landfills | <u> </u> | | · | | Topographic map drawn to the required scale with contours showing the boundaries of the landfill unit, ground water monitoring well locations, gas monitoring points, and the borrow and fill areas (R315-310-4(2)(a)(i)) | | | | | Most recent U.S. Geological Survey topographic map, 7-1/2 minute series, showing the waste facility boundary; the property boundary; surface drainage channels; any existing utilities and structures within one-fourth mile of the site; and the direction of the prevailing winds (R315-310-4(2)(a)(ii)) | | | | | IIb. Geohydrological Assessment - All Class I and V Landfills (R315-310-4(2)(b)) | | | | | Local and regional geology and hydrology including faults, unstable slopes and subsidence areas on site (R315-310-4(2)(b)(i)) | | | | | Evaluation of bedrock and soil types and properties including permeability rates (R315-310-4(2)(b)(ii)) | | | | | // Facility Technical Information | | |---|----------------------| | Description of Item | Location In Document | | Depth to ground water (R315-310-4(2)(b)(iii)) | | | Direction and flow rate of ground water (R315-310-4(2)(b)(iv)) | | | Quantity, location, and construction of any private or public wells on-site or within 2,000 feet of the facility boundary (R315-310-4(2)(b)(v)) | | | Tabulation of all water rights for ground water and surface water on-site and within 2,000 feet of the facility boundary (R315-310-4(2)(b)(vi)) | | | Identification and description of all surface waters on-site and within one mile of the facility boundary (R315-310-4(2)(b)(vii)) | | | Background ground water and surface water quality assessment and, for an existing facility, identification of impacts upon the ground water and surface water from leachate discharges (R315-310-4(2)(b)(viii)) | | | Ground Water Monitoring (R315-303-3(7)(b) and R315-308) | | | Statistical method to be used (R315-308-2(7)) | | | Calculation of site water balance (R315-310-4(2)(b)(ix)) | | | IIc Engineering Report - Plans, Specifications, And Calculations - All Class I and V Landfills | | | Documentation that the facility will meet all of the performance standards of R315-303-2 | | | Engineering reports required to meet the location standards of R315-302-1 including documentation of any demonstration or exemption made for any location standard (R315-310-4(2)(c)(i)) | | | Anticipated facility life and the basis for calculating the facility's life (R315-310-4(2)(c)(ii)) | | | Cell design to include liner design, cover design, fill methods, elevation of final cover including plans and drawings signed and sealed by a professional engineer registered in the State of Utah (R315-303-3(3), R315-303-3(6) and (7)(a), R315-310-3(1)(b) and R315-310-4(2)(c)(iii)) | | | Leachate collection system design and calculations showing system meets the requirements of R315-303-3(2) | | | Equipment requirements and availability (R315-310-4(2)(c)(iii)) | | | Identification of borrow sources for daily and final cover and for soil liners (R315-310-4(2)(c)(iv)) | | | Run-On and run-off diversion designs (R315-303-3(1)(c), (d) and (e)) | | | Leachate collection, treatment, and disposal and documentation to show that any treatment system is being or has been reviewed by the Division of Water Quality (R315-310-4(2)(c)(v) and R315-310-3(1)(i)) | | | // Facility Technical Information | W . | | - | | |---|------|----------|--------------|-------------------| | Description of Item | | | cation Docur | 2" | | Ground water monitoring plan that meets the requirements of Rule R315-308 including well locations, design, and construction (R315-310-4(2)(b)(x) and R315-310-4(2)(c)(vi)) | | | | | | Landfill gas monitoring and control plan that meets the requirements of Subsection R315-303-3(5) (R315-310-4(2)(c)(vii)) | | | | | | Slope stability analysis for static and under the anticipated seismic event for the facility (R315-310-4(2)(b)(i) and R315-302-1(2)(b)(ii)) | | | | | | Design and location of run-on and run-off control systems
(R315-310-4(2)(c)(viii)) | | | | | | IId. Closure Plan - All Class I and V Landfills (R315-310-3(1)(h)) | 1, 4 | :# | g to i | # · v · · · · · · | | Closure Plan (R315-302-3(2) and (3)) | | | | | | Closure schedule (R315-310-4(2)(d)(i)) | | | | | | Design of final cover (R315-303-3(4) and R315-310-4(2)(c)(iii)) | | | | | | Capacity of site in volume and tonnage (R315-310-4(2)(d)(ii)) | | | | | | Final inspection by regulatory agencies (R315-310-4(2)(d)(iii)) | | | | | | Ile. Post-Closure Care Plan - All Class I and V Landfills (R315-310-3(1)(h)) | | ₩ | | | | Post-Closure Plan (R315-302-3(5) and (6)) | | | | | | Site monitoring of landfill gases, ground water, and surface water, if required (R315-310-4(2)(e)(i)) | | | | | | Changes to record of title, land use, and zoning restrictions (R315-310-4(2)(e)(ii)) | | | | | | Maintenance activities to maintain cover and run-on/run-off control systems (R315-310-4(2)(e)(iii)) | | | | | | List the name, address, and telephone number of the person or office to contact about the facility during the post-closure care period (R315-310-4(2)(e)(vi)) | | | | | | IIf. Financial Assurance - All Class I and V Landfills (R315-310-3(1)(j)) | * | | | t a. | | Identification of closure costs including cost calculations (R315-310-4(2)(d)(iv)) and (R315-302-2(2)(n)) | | | | | | Identification of post-closure care costs including cost calculations (R315-310-4(2)(e)(iv)) | | | | | | Identification of the financial assurance mechanism that meets the requirements of Rule R315-309 and the date that the mechanism will become effective (R315-309-1(1)) | | | : | | $N: ALL \SWS-Form \Permit\ Application\ forms \2007_Class_I_ and _V_ application_ and_ checklist. doc$ #### Utah Code Title 19 Chapter 6 Section 108 (10) #### (10) (a) Evidence of proven market: The Salt Lake City area has a potential need for disposal of 3,500 to 4,000 tons/year of friable and non-friable asbestos, based on contractor estimates. Disposal pricing ranges from \$100 to \$500 per ton depending on which facility is used (Waste Control or Salt Lake Valley Landfill). The sources of these materials are the interior and exterior demolition and remodeling of existing structures. #### (b) Benefits to the Public The need for an additional landfill permitted to accept Friable Asbestos is necessary due to the short remaining life of the only non-county permitted landfill (Waste Control). An additional facility is necessary to maintain competitive pricing. Competitive pricing is critical to ensure that contractors have a local option that is not cost prohibitive. Waste Management has a proven record of regulatory compliance and is a large corporation with over \$20 Billion worth of assets. #### (c) Compliance History Mountain View Landfill has an excellent compliance history with the UDEQ as well as the SLVHD. ## A=2 ## Proof of Ownership To the Division of Corporation and Commercial Code State of Utah Pursuant to the provisions of the Urah Revised Business Corporation Act, BLANDFIL, INC., a Utah business corporation (the "Company"), does hereby adopt the following Article of Amendment: #### Article I. The name of the Company shall be changed to "Mountainview Landfill, Inc." by amending Article I of the Articles of Incorporation to read as follows: "Article I: The name shall be "Mountainview Landfill, Inc." Article II. The amendment was adopted on December 21, 1998. Article III. The total shares outstanding are 100 shares of common stock, all of which were emitted to vote on the amendment, and all of which voted in favor of the amendment. BLANDFILL, INC. Name: UBRYAN 3. BU Title: VICE PRESIDENT ::ODMA/PCDOCS/HOUSTONG10539/1 8125871 After Recording Mail To: Mountainview Landfill c/o Waste Management Inc. 8310 South Valley Highway, Suite 200 Inglewood, Colorado 80112 RECORDER, SALT LAKE COUNTY, UTAH SL CITY MANAGEMENT SERVICES BY: KLB, DEPUTY - NI 3 F. ### **QUIT CLAIM DEED** SALT LAKE CITY CORPORATION, 451 South State St., Rm. 245, Salt Lake City, Utah 84111, a Utah municipal corporation, "GRANTOR", hereby quit claims to, MOUNTAINVIEW LANDFILL, INC., c/o Waste Management Inc., 8310 South Valley Highway, Suite 200, Inglewood, CO 80112, as "GRANTEE", for the sum of TEN AND NO/100THS DOLLARS (\$10.00), and other good and valuable consideration, the receipt and sufficiency of which is hereby acknowledged, all of its right, title and interest in and to the following parcel(s) of land situated in Salt Lake County, State of Utah, more particularly described as follows: EXHIBIT "A" attached hereto and by this reference made a part hereof. To intent of this deed is to reconvey to the Grantee, property erroneously conveyed to Grantor by that certain Special Warranty Deed, dated Feburary 5th, 2001, and recorded October 17th, 2001 in Book 8512, Pages 5317 & 18. DATED 2-2-03 SALT LAKE CITY CORPORATION MAYOR ATTEST AND COUNTERSIGN: DEPUTY OF TY RECORDER APPROVED AS TO FORM Salt Lake City Attorney's Office BY Com dated /- 23 -02 RECORDED FEB 0 6 2002 CITY RECORDER The foregoing instrument was acknowledged before me this day of 1, 2002, by ROSS C. ANDERSON, in his capacity as MAYOR of SALT LAKE CITY CORPORATION, a Utah municipal corporation. NOTARY PUBLIC, residing in Salt Lake County, Utah The foregoing instrument was acknowledged before me this day of No. 1011 1002, by **Beauty Jones** in her capacity as DEPUTY CITY RECORDER of SALT LAKE CITY CORPORATION, a Utah municipal corporation. NOTARY PUBLIC, residing in Salt Lake County, Utah JAN.2, 1997 ## ELANDFILL COMBINED DESCRIPTION NET OF 1300 SOUTH STREET RIGHT OF WAY AND 7200 WEST STREET RIGHT OF WAY BEGINNING AT A POINT ON THE NORTH RIGHT OF WAY LINE OF 1300 SOUTH STREET, SAID POINT BEING NORTH 0020'13" EAST 42.00 FEET ALONG QUARTER SECTION LINE FROM THE SOUTH QUARTER CORNER OF SECTION 10. TOWNSHIP 1 SOUTH, RANGE 2 WEST, SALT LAKE BASE AND MERIDIAN AND RUNNING THENCE NORTH 0020'13" EAST 1284.27 FEET ALONG SAID QUARTER SECTION LINE TO QUARTER-QUARTER SECTION LINE; THENCE 89654'08" WEST 2596.29 FEET ALONG SAID QUARTER-QUARTER SECTION LINE TO A POINT ON THE EAST RIGHT OF WAY LINE OF 7200 WEST STREET, SAID POINT BEING NORTH 0º40'30" EAST 1327.77 FEET ALONG SECTION LINE AND SOUTH 89054'08" EAST 55.00 FEET ALONG SAID QUARTER-QUARTER SECTION LINE FROM THE SOUTHWEST CORNER OF SAID SECTION 10; THENCE SOUTH 0040'30" WEST 1260.74 FEET ALONG SAID EAST RIGHT OF WAY LINE; THENCE SOUTH 44037'45" EAST 35.17 FEET ALONG RIGHT OF WAY LINE TO THE NORTH RIGHT OF WAY LINE OF 1300 SOUTH STREET; THENCE SOUTH 89056'00" EAST 2578.88 FEET ALONG SAID NORTH RIGHT OF WAY LINE TO THE POINT OF BEGINNING. (BASIS OF BEARING: NORTH 89056'00" WEST 2659.13 FEET ALONG SECTION LINE) affects parcel # 14-10-300-011 CONTAINS: 76.692 ACRES **EXHIBIT "A"** CO. RECORDER BK8568PG3197 ## A-3 RESERVED ## $+ \frac{1}{2} \cdot \hat{\Lambda} = 4$ and the second Fugitive Düst Control Plan 🗥 🦠 ## Department of Environmental Quality Division of Air Quality Governor Dianne R. Niclson, Ph.D. Executive Director Richard W. Sprott Director Michael O. Leavitt 150 North 1950 West P.O. Box 144820 Salt Lake City, Utah 84114-4820 (801) 536-4000 (801) 536-4099 Fax (801) 536-4414 T.D.D. www.deq.utah.gov DAQC-428-2003 March 17, 2003 Gary Carter, P.E., Environmental Engineer Secor International Inc. 308 East 4500 South, Suite 100 Salt Lake City, Utah 84107-3975 Dear Mr. Carter: Re: Fugitive Dust Control Plan submitted February 24, 2003 - Utah Administrative Code (UAC) R307309-4. Fugitive Emissions and Fugitive Dust - Mountain View Landfill (MVLF)- Salt Lake County A Fugitive Dust Control Plan (Plan), dated June 24, 2002, was received by the Division of Air Quality from Secor International Inc. (Secor) in behalf of Waste Management of Utah, Inc. for the Mountain View Landfill (MVLF) operation. The site is located on 77 acres at 6976 West California Ave, Salt Lake City, Salt Lake County, Utah. The operation at the MVLF is a permanent project. It does not appear that MVLF is currently subject to a Notice of Intent and Approval Order according to Utah Administrative Code (UAC) R-307-401. Under the present operation parameters, the emissions from the MVLF can be assumed to be below the five-ton threshold. The fugitive dust control plan submitted appears to fulfill Waste Management of Utah, Inc.'s requirement to submit a fugitive dust control plan in accordance with UAC R307-309-4 at this time. Please be advised that any track-out from the landfill onto a public, paved road, must also be controlled. This notice does not relieve Waste Management of Utah, Inc. of its obligations to comply with all other applicable provisions of the UAC. Failure to fully implement the Fugitive Dust Control Plan and/or failure to comply with the applicable requirements of the UAC or permit conditions may result in compliance actions, notices of violation and associated penalties. If you have any questions regarding this notice, please contact Gisela Jensen at (801) 536-4406. Page 2 When responding refer to the date on this letter. Sincerely, Jeff Dean, Compliance Manager Division of Air Quality JND:GIJ:aj cc: Salt Lake Valley Health Department # FUGITIVE DUST CONTROL AT THE MOUNTAIN VIEW LANDFILL WASTE MANAGEMENT **Mountain View Landfill** 6976 West California Avenue Salt Lake City, Utah February 19, 2003 SECOR INTERNATIONAL INCORPORATED www.secor.com 308 East 4500 South, Suite 100 Murray, Utah 84107-3975 Murray, Utah 84107-3975 801-266-7100 TEL 801-266-7118 FAX February 19, 2003 Mr. Richard Sprott Director, Division of Air Quality Utah Department of Environmental Quality 150 North 1950 West Salt Lake City. Utah 84114 Re.: Fugitive Fugitive Dust Control at the Mountain View Landfill Dear Mr. Sprott: This letter is provided to the Division of Air Quality (DAQ) in order to confirm compliance with Title R307-205-2, Fugitive Emissions for the Mountain View Landfill (MVLF). The MVLF is approximately 77 acres located at 6976 West California Avenue, Salt Lake City, Utah.
MVLF is a construction and demolition landfill that has been in operation since April 1985 under various owners. Since July 1998 MVLF has been owned and operated by Waste Management of Utah, Inc. The MVLF receives demolition and construction waste as defined by Title R3315-301-2. Wastes that are acceptable for receipt at MVLF include bricks, concrete, other masonry materials, soil, asphalt, rock, untreated lumber, rebar, tree stumps, building materials, packaging, and rubble resulting from construction, remodeling, repair, and demolition operations on pavement, houses, commercial buildings, and other structures. The facility does not receive asbestos, contaminated soils, tanks resulting from remediation or cleanup at any release or spill, waste paints, solvents, sealers, adhesives, or similar hazardous or potentially hazardous materials. The only source of airborne emissions at MVLF is fugitive dust. Enclosed with this letter is a Fugitive Dust Control Plan for MVLF to meet the requirements of Title R307-205-2. It is our understanding that MVLF is subject to the requirements of Title R307-205, but is not subject to Title R307-401, Notice of Intent and Approval Order. We request a reply from DAQ that confirms MVLF is not subject to Title R307-401 and that the content of the enclosed Fugitive Dust Control Plan meets the requirements of Title R307-205. Should you have any questions regarding this letter or the Fugitive Dust Control Plan, please feel free to contact me at 327-7821. Sincerely. ON BEHALF OF THE MOUNTAIN VIEW LANDFILL SECOR International incorporated Gary A. Carter, P.E. Environmental Engineer cc: Stacy Anderson – Waste Management Patrick Craig – Waste Management Len Butler – Waste Management Kevin Bertrand - SECOR International Incorporated **Enclosure** Mr. Richard Sprott February 19, 2003 Page 2 #### Fugitive Dust Control Plan Mountain View Landfill Salt Lake City, Utah The primary sources of fugitive dust at the MVLF are haul roads, disturbed areas and stockpiles. The following control measures shall be implemented at MVLF to minimize the creation of fugitive dust: - The vehicle speed limit for paved and unpaved roads and disturbed areas will be 15 miles per hour. Vehicle speed limit signs are posted to control speeds. - Watering of haul roads shall be conducted as necessary to control fugitive dust. - Fugitive emissions from land clearing, overburden removal, and disturbed areas at the landfill shall be controlled by watering as necessary. - Active and inactive landfill material stockpiles shall be watered as necessary to control fugitive emissions. - Watering of the soil or alternative cover will be done as necessary to control fugitive emissions. - Vegetation growth will be initiated and maintained on closed landfill areas to minimize fugitive dust emissions. ## Site Facility Inspection Form. # MOUNTAIN VIEW LANDFILL Quarterly Permit Facility Inspection | Signature | Date | |-----------|------| | | | | | | | ITEM | YES/NO | COMMENTS | |---|--------|----------| | Have wastes been placed in the appropriate locations? | | | | Have wastes been properly compacted? | | | | Are wastes being covered to prevent fires? | | | | Are the facility fences, gates, and other access controls in good condition? | | | | Are the facility roads maintained to provide safe and reliable access to the disposal area? | | | | Are the facility run-on/off controls in good condition and not blocked? | | | | Is final and intermediate cover in good condition? | | | | Is litter being picked up as necessary? | | | | Is the daily operating record being completed as required? | | | Appendix B Soils Testing # APPENDIX B SOILS TESTING Table 1 Summary of Soils Laboratory Testing | Summary | of Soils | Laboratory T | esting | Grai | n Size | Atterb | erg Limits | | tion Test
1 1557) | Permeabili | ty Test | |------------------|---------------------------|------------------------|----------------------------|------------------------------|--------------------------------|-------------------------|-----------------------------|------------------------------------|---------------------------------------|-----------------------|--| | Sample
Number | Dry
Inplace
Density | USCS
Classification | Moisture
Content
(%) | Percent
Passing
#4 (%) | Percent
Passing
#200 (%) | Liquid
Limit
(LL) | Plasticity
Limit
(PL) | Maximum
Dry
Density
(pcf) | Optimum
Moisture
Content
(%) | Remolding
Criteria | Coefficient of
Permeability
k (cm/sec) | | a. Bucket 2 | | SC | 22.5 | 80 | 48 | 27 | 18 | | | | | | b. Bucket 3 | | CL | 28.1 | 96 | 84 | 38 | 20 | | | | | | c. Bucket 4 | | CL - | 30.3 | 100 | 96 | 44 | 22 | | | | | | d. Bucket SK1 |
 | sc | 21.7 | 81 | 47 | 29 | 18 | | | | | | e. Bucket SK2 | | SC | 16.6 | 77 | 44 | 28 | 17 | 124.0 | 9.5 | | | | f. Bucket SK3 | | CL | 25.6 | 92 | 68 | 31 | 19 | | | | | | g. Bucket SK4 | | GC | 19.0 | 64 | 32 | 27 | 17 | 127.3 | 7.8 | 90%RC@OMC+2 | 5.00E-06 | | h. Core #1 | 92.1 | CL | 28.3 | | | | | | | | | | i. Core #2 | | | 17.9 | | | | | | | | | | j. Core #3 | 89.7 | CL or SC | 28.3 | | | | | | | | | | k. Core #4 | 84.8 | CL | 33.9 | | | | | | | | 3.70E-07 | | l. Sample #I | 104.7 | SC | 17.8 | 83.8 | 46.6 | 26 | 18 | 116.7 | 13.5 | | | | m. Sample #2 | 102.6 | CL | 13.6 | 85.6 | 54.9 | 27 | 18 | 114.5 | 14 | | | | n. Sample #3 | 106.7 | SC | 14.1 | 81.3 | 46.0 | 25 | 17 | 118.7 | 12.5 | | | ### <u>NOTE:</u> Samples were sent to EMCON/OWT, Inc.'s Soil Lab. Samples a-k were sampled in March 1998and samples l-n were sampled in November 2004. Core samples have slightly higher moisture and are probably more accurate. RC = relative compaction **OMC** = optimum moisture content ## **TESTING BY EMCON** ASTM D422 ## EMCON/OWT, Inc. A Shaw Group Company PROJECT NAME: MT. VIEW LANDFILL PROJECT NO.: 102094 δγχ93σπ SAMPLE NO.: SAMPLE # I DATE: 11/09/04 | SAMPLE NO.: | SAMPLE # | | | DAIE: | 11/09/04 | | | |-------------------------|-----------|-----------|---------------------------|---------|---------------|---------------|---------| | DESCRIPTION: | CLAYEY | | | TECH.: | DGC | | | | UNIFIED SOIL CLASS | FICATION: | SC | CORRE | CTIONS: | | | | | Moisture Content Determ | ination: | | 1 1/2" | 98.6 | Dry Wt Use | d, Hydrom: | 50.9 | | Pan Number: | | #500 | 3/4" | 94.7 | Est. Sp. Gr., | (2.60-2.80): | 2.61 | | Pan + Wet Soil, gms. | | 910.9 | 3/8" | 88.6 | Temp. | ,(18-23)°C: | 21 | | Pan + Dry Soil, gms. | | 787.2 | D ₆₀ | | | Correction | 5.0 | | Wt. of Pan, gms. | | 92.6 | D_{30} | | Miniscus | Correction: | 0.5 | | Wt. of Dry Soil, gms. | | 694.6 | $\mathbf{D_{10}}$ | 0.001 | L | iquid Limit: | 26 | | Wt. of Water, gms. | | 123.7 | $\mathbf{C}_{\mathbf{U}}$ | 113.04 | | ticity Index: | 8 | | Water content, %. | | 17.8 | $\mathbf{C}_{\mathbf{C}}$ | 4.20 | High; Mod | .; Low; NP: | | | SIEVE SIZE | PARTICLE | PARTICLES | WEIGHT | ACC | UMULATE | WEIGHT | PERCENT | | | SIZE, | DIAMETER, | RETAINED | WEIGH' | T RETAINE | PASSING | PASSING | | (U.S. STANDARD) | (inches) | (mm) | (gms) | (gms) | | (gms) | (%) | | 5" | 5.000 | 127.00 | | 0 | | 694.6 | 100.0 | | 3" | 3.000 | 76.20 | | 0 | | 694.6 | 100.0 | | 1 1/2" | 1.500 | 38.10 | | 0 | | 694.6 | 98.6 | | 3/4" | 0.750 | 18.90 | | 0 | · | 694.6 | 94.7 | | 3/8" | 0.375 | 9.52 | 0.0 | 0 | | 694.6 | 88.6 | | #4 | 0.185 | 4.70 | 37.4 | 37.4 | | 657.2 | 83.8 | | #8 | 0.093 | 2.36 | 40.3 | 77.7 | | 616.9 | 78.7 | | #16 | 0.046 | 1.17 | 29.4 | 107.1 | | 587.5 | 74.9 | | #30 | 0.023 | 0.59 | 42.5 | 149.6 | | 545 | 69.5 | | #50 | 0.012 | 0.30 | 32.8 | 182.4 | | 512.2 | 65.3 | | #100 | 0.006 | 0.15 | 44.1 | 226.5 | | 468.1 | 59.7 | | #200 | 0.003 | 0.07 | 102.9 | 329.4 | _ | 365.2 | 46.6 | | | _ | 0.0420 | 1 min. | ` | | 42 | 33.4 | | Bulb 15 | 4 min. | | | 35 | 27.0 | | | | HYDROMET | ER TEST | 0.0107 | 19 min. | | | 29 | 21.5 | | WITH DISPERSI | NG AGENT | 0.0062 | 60 min. | | | 25 | 17.8 | | | | 0.0024 | 7hr., 15min. | | | 20 | 13.3 | | li | | 0.0013 | OShr 45min | | | 16 | 0.6 | **ASTM D4318** EMCON/OWT, Inc. A Shaw Group Company Project Name: MT. VIEW LANDFILL Lab. No.: 04-076 102094 Proj. No.: Sample No.: SAMPLE # I Depth, ft.: BULK 11/10/04 Date: Description: CLAYEY SAND WITH GRAVEL, BROWN. Tested By: **DGC** Checked By: | */ | Liquid Limit | | | | | | | |--------------------------------|--------------|-------|-------|--|--|--|--| | Can Number | . D-6 | C-1 | B-3 | | | | | | Weight of Can + Wet Soil, gms. | 68.58 | 65.03 | 68.98 | | | | | | Weight of Can + Dry Soil, gms. | 61.46 | 58.24 | 60.96 | | | | | | Weight of Can, gms. | 31.90 | 32.03 | 32.16 | | | | | | Weight of Dry Soil, gms. | 29.56 | 26.21 | 28.80 | | | | | | Weight of Water, gms. | 7.12 | 6.79 | 8.02 | | | | | | Water Content, % | 24.1 | 25.9 | 27.8 | | | | | | Number of Blows | 45 | 25 | 16 | | | | | | Plastic | Limit | | |---------|-------|--| | A-5 | B-1_ | | | 47.87 | 47.44 | | | 45.48 | 45.13 | | | 32.04 | 32.11 | | | 13.44 | 13.02 | | | 2.39 | 2.31 | | | 17.8 | 17.7 | | ### **Unified Soil Classification** SC ## **SPECIFIC GRAVITY** ASTM D854 Shaw " EMCON/OWT, Inc. A Shaw Group Company PROJ. NAME: MT. VIEW LF. PROJ. NO.: 102094 **DATE:** 11/11/04 SAMPLE NO.: SAMPLE # I DEPTH, FT.: BULK TESTED BY: DGC DESCRIPTION: CLAYEY SAND WITH GRAVEL, BROWN. CORRECTED BY: **LABORATORY MEASUREMENTS:** | TRIAL NUMBER | 1 | 2 | 3 | |--------------------------------|--------|--------|--------| | FLASK NUMBER | A | Α | A | | WEIGHT OF FLASK + WATER + SOIL | 735.8 | 734.8 | 733.8 | | TEMP., DEGREE C | 28.0 | 35.0 | 40.0 | | WEIGHT OF FLASK + WATER | 657.3 | 656.2 | 655.2 | | WEIGHT OF DRY SOIL USED, GRAMS | 127.04 | 127.04 | 127.04 | **SPECIFIC GRAVITY OF WATER:** | С | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | 10 | 0.9997 |
0.9966 | 0.9995 | 0.9994 | 0.9993 | 0.9991 | 0.9990 | 0.9988 | 0.9986 | 0.9984 | | 20 | 0.9982 | 0.9980 | 0.9978 | 0.9976 | 0.9973 | 0.9971 | 0.9968 | 0.9965 | 0.9963 | 0.9960 | | 30 | 0.9957 | 0.9954 | 0.9951 | 0.9947 | 0.9944 | 0.9941 | 0.9937 | 0.9934 | 0.9930 | 0.9926 | | 40 | 0.9922 | 0.9919 | 0.9915 | 0.9911 | 0.9907 | 0.9902 | 0.9898 | 0.9894 | 0.9890 | 0.9885 | **LABORATORY CALCULATIONS:** | TRIAL NUMBER | 1 | 2 | 3 | |-------------------------------|--------|--------|--------| | SPEC. GRAVITY OF WATER @ T | 0.9963 | 0.9941 | 0.9922 | | GT* Ws | 126.57 | 126.29 | 126.05 | | W1 - W2 | 78.50 | 78.60 | 78.60 | | Ws - (W1 - W2) | 48.54 | 48.44 | 48.44 | | Gs = GT * Ws / Ws - (W1 - W2) | 2.61 | 2.61 | 2.60 | Average Specific Gravity: 2.61 δγχ93σπγ | COMPACTION TEST | | | | | | | | | | | | | |----------------------|-------------------------|-----------------|----------------|------------|-------------|-------------|--|--|--|--|--|--| | Shaw EMCO | N/OWT, Inc. | | ASTM D155 | 57 | | | | | | | | | | II CONTRAR | haw Group Company | 2 | ASTM D698 | 3 | Checked By: | | | | | | | | | Project Name: | MT. VIEW LF. | Proj. No.: | 102094 | | Lab. No.: | 04-076 | | | | | | | | Sample No.: | SAMPLE # I | Depth, ft.: | BULK | • | Tested By: | DGC | | | | | | | | Description: | CLAYEY SAND WITH | | ROWN. | | Date: | 11/10/04 | | | | | | | | Vol., Mold, cf.: | 0.03333 Hammer V | Veight,: | 5.5 lbs. | Hammer Dro | | 12" | | | | | | | | No. of Layers: | 3 Blows/Lay | - | 25 | ASTM Desi | gnation: | | | | | | | | | | | | | Method: | "B" | | | | | | | | | Trial Number | | -6 | -4 | -2 | Nat. | | | | | | | | | Container Number | | Q | #6 | Y-5 | A-1 | | | | | | | | | Wet Soil + Container | (gms.) | 923.60 | 953.30 | 731.70 | 881.20 | | | | | | | | | Dry Soil + Container | (gms.) | 853.10 | 868.00 | 644.00 | 776.00 | | | | | | | | | Container Weight | (gms.) | 185.50 | 204.20 | 56.90 | 181.00 | | | | | | | | | Weight of Water | (gms.) | 70.50 | 85.30 | 87.70 | 105.20 | | | | | | | | | Weight of Dry Soil | (gms.) | 667.60 | 663.80 | 587.10 | 595.00 | | | | | | | | | Moisture Content | (%) | 10.6 | 12.9 | 14.9 | 17.7 | | | | | | | | | Wet Soil + Mold | (gms.) | 3711 | 3835 | 3857 | 3820 | | | | | | | | | Weight of Mold | (gms.) | 1851 | 1851 | 1851 | 1851 | | | | | | | | | Wet Weight of Soil | (lbs.) | 4.10 | 4.37 | 4.42 | 4.34 | | | | | | | | | Wet Unit Weight | (pcf.) | 123.0 | 131.2 | 132.7 | 130.2 | | | | | | | | | Dry Unit Weight | (pcf.) | 111.3 | 116.3 | 115.4 | 110.7 | | | | | | | | | | | Maximum Dry I | Density, pcf.: | 116.7 | 1 | | | | | | | | | | | Opt. Moisture C | ontent, %: | 13.5 | 1 | | | | | | | | # EMCON/OWT, Inc. ### HYDRAULIC CONDUCTIVITY **ASTM D5084** A Shaw Group Company MOUNTAIN VIEW LANDFILL LAB. NUMBER: 04-076 102094 ROJECT NAME: SAMPLE NUMBER: PROJECT NUMBER: SAMPLE DEPTH: REMOLDED DESCRIPTION: SAMPLE # I **TESTED BY:** 11/19/04 DATE: DGC CHECKED BY: CLAYEY SAND WITH GRAVEL, BROWN. Remolded to 90% of max, dry density (ASTM D698) at ont. | | Kemoueu | 10 70 70 0j i | nux, ary a | ensuy (ASTM 19096) at opt2% water | content. | · · · · · · · · · · · · · · · · · · · | |------------------|---------|---------------|------------|-----------------------------------|----------|---------------------------------------| | SAMPLE D. | VT.V | BEFORE | AFTER | OVEN DRY | | | | | | TEST | TEST | | | | | DEAMETER | (cm) | 7.28 | 7.23 | TARE NUMBER | | A-1 | | песан | (cm) | 6.40 | 6.40 | WT. OF TARE+WET SOIL | (gm) | 620.90 | | VOLUME | (cc) | 266.264 | 262.619 | WT. OF TARE+DRY SOIL | (gm) | 530.30 | | WT. OF WET SOIL | (តិរា) | 499.0 | 537,5 | WT. OF TARE | (gm) | 83.40 | | WT. OF DRY SOIL | (gm) | 446.9 | 446.9 | WT. OF WATER | (gm) | 90.60 | | WT. OF WATER | (gm) | 52.1 | 90.6 | WT. OF DRY SOIL | (gm) | 446.9 | | MOISTURE CONTENT | (%) | 11.7 | 20.3 | WATER CONTENT | (%) | 20.3 | | DRY DENSITY | (pct) | 104.73 | 106.19 | LAB. MAX. DRY DENSITY | (pcf) | 116.7 | | VOID RATIO | (ઇ) | 0.56 | 0.53 | OPT. WATER CONTENT | (%) | 13.5 | | SATURATION | (s) | 54.8 | 99.1 | RELATIVE COMPACTION | (%) | 90 | | POROSITY | (h) - | 0.3569 | 0.3480 | SPECIFIC GRAVITY | (est.) | 2.61 | ### PRESSURE DATA DURING PERMEABILITY TEST: "B" parameter 0.98 Area of Burette: 0.6 sq. cm. CONFINING PRESS. 55 psi Temp. Correction: 0.976 21 °C BACK PRESS. (bot) 50 BACK PRESS. (top) psi AVERAGE CONSOL. PRESSURE: 5.0 PERMEANT: TAPWATER | DATE | TIME | ELAPSED | STATUS | | BURET | | | | DING | |------------|--------|---------|--------|--------|--------|--------|---------------|---------|----------------------------| | | | TIME | RESET | TOP | | воттом | | CHAMBER | COMMENTS | | · _ | L | (sec) | | PRESS. | (psi.) | PRESS. | PRESS. (psi.) | | | | SATURATION | : | | | | | | _ | | Skempton's "B" | | 11/19/2004 | 7:30 | | | 50.0 | | 50.0 | | 51.0 | 49.7 | | 11/19/2004 | -11:54 | | | | | | | 61.0 | 59.5 | | CONSOLIDAT | ION: | | | TOP | ΔΤ | вот. | ΔВ | CHAMBER | | | | | | | (cm) | (cm.) | (cm) | (cm.) | (cm) | | | PERMEABILI | ΓY: | | | | | | | | | | 11/22/2004 | 6:04 | RESET | R | 0.5 | | 39.5 | | 12.7 | Hydraulic Cond., (cm/sec.) | | 11/22/2004 | 6:07 | 180 | | 10.3 | | 28.6 | | 12.7 | 1.9E-04 | | 11/22/2004 | 6:08 | RESET | R | 0.7 | | 39.6 | | 12.7 | Hydraulic Cond., (cm/sec.) | | 11/22/2004 | 6:11 | 180 | | 11.3 | | 28.8 | | 12.7 | 2.0E-04 | | 11/22/2004 | 6:12 | RESET | R | 0.3 | | 39.5 | | 12.7 | Hydraulic Cond., (cm/sec.) | | 11/22/2004 | 6:15 | 180 | | 10,8 | | 28.6 | | 12.7 | 2.0E-04 | | 11/22/2004 | 6:16 | RESET | R | 0.6 | | 39,5 | _ , | 12.7 | Hydraulic Cond., (cm/sec.) | | 11/22/2004 | 6:19 | 180 | | 11.1 | | 28.8 | | 12.7 | 2.0E-04 | , | | | | | | | | | δγχ93πμ | ASTM D422 ### ™ EMCON/OWT, Inc. A Shaw Group Company PROJECT NAME: MT. VIEW LANDFILL PROJECT NO.: 102094 SAMPLE NO.: SAMPLE # II DATE: 11/09/04 DESCRIPTION: | SANDY | LEAN (| LAY, | BROWN. | | |-------|--------|------|--------|--| | | | | | | TECH.: DGC | UNIFIED SOIL CLASSII | FICATION: CL | CORRE | CTIONS: | | | |-------------------------|-------------------------|-----------------------------|---------|----------------------------|---------| | Moisture Content Determ | nation: | 1 1/2" | 100.0 | Dry Wt Used, Hydrom: | 52.4 | | Pan Number: | #510 | 3/4" | 95.8 | Est. Sp. Gr., (2.60-2.80): | 2.64 | | Pan + Wet Soil, gms. | 910.5 | 3/8" | 90.1 | Temp.,(18-23) °C: | 21 | | Pan + Dry Soil, gms. | 812.4 | D ₆₀ | 0.108 | Zero Correction | 5.0 | | Wt. of Pan, gms. | 89.0 | D_{30} | 0.012 | Miniscus Correction: | 0.5 | | Wt. of Dry Soil, gms. | 723.4 | $\mathbf{D_{10}}$ | #DIV/0! | Liquid Limit: | 27 | | Wt. of Water, gms. | 98.1 | C_{U} | #DIV/0! | Plasticity Index: | 9 | | Water content, %. | 13.6 | $C_{\rm C}$ | #DIV/0! | High; Mod.; Low; NP: | | | CONTROL OFFICE | DAMESTON TO A DOMEST DO | T THE PARTY OF THE PARTY OF | | The second second second | 200 200 | | water content, %. | | 13.0 | U _C | | a.; Low; NP: | | |-------------------|----------|-----------|----------------|----------------|--------------|---------| | SIEVE SIZE | PARTICLE | PARTICLES | WEIGHT | ACCUMULATE | WEIGHT | PERCENT | | | SIZE, | DIAMETER, | RETAINED | WEIGHT RETAINE | PASSING | PASSING | | (U.S. STANDARD) | (inches) | (mm) | (gms) | (gms) | (gms) | (%) | | 5" | 5.000 | 127.00 | | 0 | 723.4 | 100.0 | | 3" | 3.000 | 76.20 | | 0 | 723.4 | 100.0 | | 1 1/2" | 1.500 | 38.10 | | 0 | 723.4 | 100.0 | | 3/4" | 0.750 | 18.90 | | 0 | 723.4 | 95.8 | | 3/8" | 0.375 | 9.52 | 0.0 | 0 | 723.4 | 90.1 | | #4 | 0.185 | 4.70 | 36.5 | 36.5 | 686.9 | 85.6 | | #8 | 0.093 | 2.36 | 34.5 | 71 | 652.4 | 81.3 | | #16 | 0.046 | 1.17 | 27.1 | 98.1 | 625.3 | 77.9 | | #30 | 0.023 | 0.59 | 29.0 | 127.1 | 596.3 | 74.3 | | #50 | 0.012 | 0.30 | 31.8 | 158.9 | 564.5 | 70.3 | | #100 | 0.006 | 0.15 | 52.0 | 210.9 | 512.5 | 63.8 | | #200 | 0.003 | 0.07 | 72.1 | 283 | 440.4 | 54.9 | | | | 0.0395 | 1 min. | | 47 | 43.4 | | Bulb 152 | 2H | 0.0209 | 4 min. | | 41 | 37.2 | | HYDROMETI | ER TEST | 0.0103 | 19 min. | | 32 | 27.7 | | WITH DISPERSIN | IG AGENT | 0.0060 | 60 min. | | 28 | 23.6 | 7hr., 15min. 0.0023 COBBLES COARSE, FINE GRAVEL COARSE, MED. TO FINE SAND N-PLASTIC SILT TO PLASTIC CLAY <u>δγχ</u>93σω 21 16.2 # Shaw # ATTERBERG LIMITS **ASTM D4318** ## Shaw EMCON/OWT, Inc. A Shaw Group Company Project Name: MT. VIEW LANDFILL Lab. No.: 04-076 Proj. No.: 102094 Sample No.: SAMPLE # II Depth, ft.: BULK Date: 11/10/04 DGC Description: SANDY LEAN CLAY, BROWN. Tested By: Checked By: | */ | Liquid Limit | | | | | | |--------------------------------|--------------|-------|-------|--|--|--| | Can Number | G-6 | C-2 | B-6 | | | | | Weight of Can + Wet Soil, gms. | 63.65 | 64.81 | 68.67 | | | | | Weight of Can + Dry Soil, gms. | 57.22 | 57.91 | 60.56 | | | | | Weight of Can, gms. | 31.97 | 32.10 | 31.99 | | | | | Weight of Dry Soil, gms. | 25.25 | 25.81 | 28.57 | | | | | Weight of Water, gms. | 6.43 | 6.90 | 8.11 | | | | | Water Content, % | 25.5 | 26.7 | 28.4 | | | | | Number of Blows | 41 | 27 | 15 | | | | | Plastic | Limit | | |---------|-------|--| | A-8 | J-6 | | | 48.58 | 48.84 | | | 46.03 | 46.24 | | | 31.86 | 31.92 | | | 14.17 | 14.32 | | | 2.55 | 2.60 | | | 18.0 | 18.2 | | ### **Unified Soil Classification** CL δγχ93ατ ## SPECIFIC GRAVITY ASTM D854 W EMCON/OWT, Inc. A Shaw Group Company PROJ. NAME: MT. VIEW LF. PROJ. NO.: 102094 **DATE:** 11/11/04 SAMPLE NO.: SAMPLE # II DEPTH, FT.: BULK TESTED BY: DGC DESCRIPTION: SANDY LEAN CLAY, BROWN. CORRECTED BY: **LABORATORY MEASUREMENTS:** | TRIAL NUMBER | 1 | 2 | 3 | |--------------------------------|--------|--------|--------| | FLASK NUMBER | C | C | C | | WEIGHT OF FLASK + WATER + SOIL | 743.0 | 742.0 | 741.4 | | TEMP., DEGREE C | 29.0 | 36.0 | 41.0 | | WEIGHT OF FLASK + WATER | 662.0 | 661.0 | 660.0 | | WEIGHT OF DRY SOIL USED, GRAMS | 130.01 | 130.01 | 130.01 | **SPECIFIC GRAVITY OF WATER:** | С | 0 | 1 | 2 | . 3 | 4 | 5 | 6
| 7 | 8 | 9 | |----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | 10 | 0.9997 | 0.9966 | 0.9995 | 0.9994 | 0.9993 | 0.9991 | 0.9990 | 0.9988 | 0.9986 | 0.9984 | | 20 | 0.9982 | 0.9980 | 0.9978 | 0.9976 | 0.9973 | 0.9971 | 0.9968 | 0.9965 | 0.9963 | 0.9960 | | 30 | 0.9957 | 0.9954 | 0.9951 | 0.9947 | 0.9944 | 0.9941 | 0.9937 | 0.9934 | 0.9930 | 0.9926 | | 40 | 0.9922 | 0.9919 | 0.9915 | 0.9911 | 0.9907 | 0.9902 | 0.9898 | 0.9894 | 0.9890 | 0.9885 | **LABORATORY CALCULATIONS:** | TRIAL NUMBER | 1 | 2 | 3 | |-------------------------------|--------|--------|--------| | SPEC. GRAVITY OF WATER @ T | 0.9960 | 0.9937 | 0.9919 | | GT* Ws | 129.49 | 129.19 | 128.96 | | W1 - W2 | 81.00 | 81.00 | 81.40 | | Ws - (W1 - W2) | 49.01 | 49.01 | 48.61 | | Gs = GT * Ws / Ws - (W1 - W2) | 2.64 | 2.64 | 2.65 | Average Specific Gravity: 2.64 δγχ93σπγ | | COMPACTION TEST | | | | | | | | | | | |-----------------------------------|-------------------|------------------|---------------|-----------|-------------|----------|--|--|--|--|--| | Shaw EMCON/OWT, Inc. ASTM D1557 | | | | | | | | | | | | | | haw Group Company | | ASTM D698 | 3 | Checked By: | | | | | | | | Project Name: | MT. VIEW LF. | Proj. No.: | 102094 | | Lab. No.: | 04-076 | | | | | | | Sample No.: | SAMPLE # II | Depth, ft.: | BULK | • | Tested By: | DGC | | | | | | | Description: | SANDY LEAN CLAY, | BROWN. | | , | Date: | 11/11/04 | | | | | | | Vol., Mold, cf.: | 0.03333 Hammer W | /eight,: | 5.5 lbs. | Hammer Dr | op: | 12" | | | | | | | No. of Layers: | 3 Blows/Laye | er: | 25 | ASTM Des | ignation: | | | | | | | | | | | | Method: | "B" | | | | | | | | Trial Number | | -2 | Nat. | 2 | 4 | | | | | | | | Container Number | | C | D | A | В | | | | | | | | Wet Soil + Container | (gms.) | 818.50 | 766.50 | 760.20 | 745.70 | | | | | | | | Dry Soil + Container | (gms.) | 745.00 | 688.20 | 671.80 | 650.00 | | | | | | | | Container Weight | (gms.) | 111.50 | 111.00 | 110.70 | 110.20 | | | | | | | | Weight of Water | (gms.) | 73.50 | 78.30 | 88.40 | 95.70 | | | | | | | | Weight of Dry Soil | (gms.) | 633.50 | 577.20 | 561.10 | 539.80 | | | | | | | | Moisture Content | (%) | 11.6 | 13.6 | 15.8 | 17.7 | | | | | | | | Wet Soil + Mold | (gms.) | 3687 | 3814 | 3833 | 3818 | | | | | | | | Weight of Mold | (gms.) | 1851 | 1851 | 1851 | 1851 | | | | | | | | Wet Weight of Soil | (lbs.) | 4.05 | 4.33 | 4.37 | 4.34 | | | | | | | | Wet Unit Weight | (pcf.) | 121.4 | 129.8 | 131.1 | 130.1 | | | | | | | | Dry Unit Weight | (pcf.) | 108.8 | 114.3 | 113.2 | 110.5 | | | | | | | | | | Maximum Dry D | ensity, pcf.: | 114.5 | | | | | | | | | | | Opt. Moisture Co | ontent, %: | 14.0 |] | | | | | | | # EMCON/OWT, Inc. ### HYDRAULIC CONDUCTIVITY **ASTM D5084** | ' AS | Shaw Group (| Company | | |------|--------------|---------|--| |------|--------------|---------|--| LAB. NUMBER: 04-076 PROJECT NAME: SAMPLE NUMBER: MOUNTAIN VIEW LANDFILL PROJECT NUMBER: 102094 SAMPLE # II SAMPLE DEPTH: REMOLDED 11/19/04 DESCRIPTION: CHECKED BY: SANDY LEAN CLAY, BROWN. DATE: TESTED BY: DGC | | Remolded to 90% of max. dry density (ASTM D698) at opt2% water content. | | | | | | | | | | |------------------|---|----------------|---------------|-----------------------|--------|--------|--|--|--|--| | SAMPLE DA | TA | BEFORE
TEST | AFTER
TEST | OVEN DRY | | | | | | | | DIAMETER | (cm) | 7.28 | 7.20 | TARE NUMBER | | V-7 | | | | | | неіснт | (cm) | 6.40 | 6.37 | WL OF TARE+WET SOIL | (gm) | 616.10 | | | | | | VOLUME | (ec) | 266.264 | 259.223 | WT. OF TARE+DRY SOIL | (gm) | 523.40 | | | | | | WT. OF WET SOIL | (gm) | 491.7 | 530.5 | WT. OF TARE | (gm) | 85.60 | | | | | | WT. OF DRY SOIL | (gm) | 437.8 | 437.8 | WT. OF WATER | (gm) | 92.70 | | | | | | WT. OF WATER | (gm) | 53.9 | 92.70 | WT. OF DRY SOIL | (gm) | 437.8 | | | | | | MOISTURE CONTENT | (°°) | 12.3 | 21.2 | WATER CONTENT | (%) | 21.2 | | | | | | DRY DENSITY | (pct) | 102.60 | 105.39 | LAB. MAX, DRY DENSITY | (pct) | 114.5 | | | | | | VOID RATIO | (e) | 0.61 | 0.56 | OPT. WATER CONTENT | (%) | 14.0 | | | | | | SATURATION | (s) | 53.7 | 99.3 | RELATIVE COMPACTION | (%) | 90 | | | | | | POROSITY | (h) | 0.3772 | 0.3603 | SPECIFIC GRAVITY | (est.) | 2.64 | | | | | PRESSURE DATA DURING PERMEABILITY TEST: "B" parameter 0.97 Area of Burette: 0.6 sq. cm. 0.976 50 21 °C CONFINING PRESS. BACK PRESS. (bot) 55 psi _ psi 50 Temp. Correction: BACK PRESS. (top) AVERAGE CONSOL. PRESSURE: 5.0 PERMEANT: TAP WATER | DATE | TIME | ELAPSED | STATUS | BURETTE READING | | | | | DING | |------------|--------------|---------|--------|-----------------|--------|--------|--------|---------------|----------------------------| | | | TIME | RESET | TOP | | вотто | ЭМ | CHAMBER | COMMENTS | | | | (sec) | | PRESS. (| (psi.) | PRESS. | (psi.) | PRESS.,(psi.) | | | SATURATION | : | | | | | | | | Skempton's "B" | | 11/19/2004 | 7:37 | | | 50.0 | | 50,0 | | 51.0 | 49.8 | | 11/19/2004 | 12:02 | | | | | | | 61.0 | 59.5 | | CONSOLIDAT | ION: | | | ТОР | ΔΤ | вот. | ΔВ | CHAMBER | | | | | | | (cm) | (cm.) | (cm) | (cm.) | (ст) | | | PERMEABILI | ΓY: | | | | | | | | | | 11/22/2004 | 6:05 | RESET | R | 1.6 | | 39.5 | | 10.3 | Hydraulic Cond., (cm/sec.) | | 11/22/2004 | 6:27 | 1320 | | 11.8 | | 29.1 | | 10.2 | 2.7E-05 | | 11/22/2004 | 6:28 | RESET | R | 1.6 | | 39.5 | | 10.2 | Hydraulic Cond., (cm/sec.) | | 11/22/2004 | 6:50 | 1320 | | 11.8 | | 29.2 | | 10.2 | 2.7E-05 | | 11/22/2004 | 6: 52 | RESET | R | 1.6 | | 39.6 | | 10.2 | Hydraulic Cond., (cm/sec.) | | 11/22/2004 | 7:14 | 1320 | | 11.9 | | 29.3 | | 10.2 | 2.7E-05 | | 11/22/2004 | 7:15 | RESET | R | 1.7 | | 39.4 | | 10.2 | Hydraulic Cond., (cm/sec.) | | 11/22/2004 | 7:37 | 1320 | | 11.9 | | 29.2 | | 10.2 | 2.7E-05 | <u></u> | | | | | | | | | δγχ93πμ | # Shaw ### **GRAIN SIZE DISTRIBUTION** ASTM D422 ### Snaw EMCON/OWT, Inc. A Shaw Group Company PROJECT NAME: MT. VIEW LANDFILL PROJECT NO.: δγχ93σσ 102094 SAMPLE NO.: SAMPLE # III DATE: 11/09/04 DESCRIPTION: CLAYEY SAND WITH GRAVEL, BROWN. TECH.: DGC | UNIFIED SOIL CLASSIFICATION: | SC | CORRE | CTIONS: | | | |---------------------------------|-------|---------------------------|---------|----------------------------|------| | Moisture Content Determination: | | 1 1/2" | 100.0 | Dry Wt Used, Hydrom: | 52.6 | | Pan Number: | #508 | 3/4" | 94.9 | Est. Sp. Gr., (2.60-2.80): | 2.62 | | Pan + Wet Soil, gms. | 995.8 | 3/8" | 86.8 | Temp.,(18-23) °C: | 21 | | Pan + Dry Soil, gms. | 883.9 | D ₆₀ | 0.225 | Zero Correction | 5.0 | | Wt. of Pan, gms. | 92.1 | D_{30} | 0.019 | Miniscus Correction: | 0.5 | | Wt. of Dry Soil, gms. | 791.8 | D_{10} | | Liquid Limit: | 25 | | Wt. of Water, gms. | 111.9 | $\mathbb{C}_{\mathtt{U}}$ | | Plasticity Index: | 8 | | Water content, %. | 14.1 | C_C | #DIV/0! | High; Mod.; Low; NP: | | | wt. of water, gills. | | 111.9 | | #D14/0: | | uchy maex. | | |----------------------|----------|-----------|--------------|---------|---------|--------------|---------| | Water content, %. | | 14.1 | C_C | #DIV/0! | | l.; Low; NP: | | | SIEVE SIZE | | PARTICLES | | | UMULATE | | PERCENT | | | SIZE, | DIAMETER, | RETAINED | WEIGHT | RETAINE | PASSING | PASSING | | (U.S. STANDARD) | (inches) | (mm) | (gms) | (gms) | | (gms) | (%) | | 5" | 5.000 | 127.00 | | 0 | | 791.8 | 100.0 | | 3" | 3.000 | 76.20 | | 0 | | 791.8 | 100.0 | | 1 1/2" | 1.500 | 38.10 | | 0 | | 791.8 | 100.0 | | 3/4" | 0.750 | 18.90 | | 0 | | 791.8 | 94.9 | | 3/8" | 0.375 | 9.52 | 0.0 | 0 | | 791.8 | 86.8 | | #4 | 0.185 | 4.70 | 50.1 | 50.1 | | 741.7 | 81.3 | | #8 | 0.093 | 2.36 | 38.2 | 88.3 | | 703.5 | 77.1 | | #16 | 0.046 | 1.17 | 32.0 | 120.3 | | 671.5 | 73.6 | | #30 | 0.023 | 0.59 | 42.5 | 162.8 | | 629 | 69.0 | | #50 | 0.012 | 0.30 | 51.1 | 213.9 | | 577.9 | 63.4 | | #100 | 0.006 | 0.15 | 74.2 | 288.1 | | 503.7 | 55.2 | | #200 | 0.003 | 0.07 | 84.2 | 372.3 | | 419.5 | 46.0 | | | | 0.0401 | 1 min. | | | 47 | 36.3 | | Bulb 152 | 2H | 0.0212 | 4 min. | | | 41 | 31.0 | | HYDROMETI | ER TEST | 0.0103 | 19 min. | | | 34 | 24.9 | | WITH DISPERSIN | IG AGENT | 0.0060 | 60 min. | | | 30 | 21.4 | | | •. | 0.0023 | 7hr., 15min. | | | 22 | 14.4 | | 1 D | | | | | | | | # Shaw # ATTERBERG LIMITS **ASTM D4318** ## PAW EMCON/OWT, Inc. A Shaw Group Company Project Name: MT. VIEW LANDFILL Lab. No.: 04-076 Proj. No.: 102094 Sample No.: SAMPLE # III LL= 25 Depth, ft.: BULK Date: _ Tested By: 11/10/04 DGC Description: CLAYEY SAND WITH GRAVEL, BROWN. Checked By: | */ | | Liquid Limit | | | | | |--------------------------------|-------|--------------|-------|--|--|--| | Can Number | B-8 | M-4 | B-7 | | | | | Weight of Can + Wet Soil, gms. | 68.52 | 66.57 | 67.75 | | | | | Weight of Can + Dry Soil, gms. | 61.67 | 59.76 | 60.45 | | | | | Weight of Can, gms. | 32.08 | 31.83 | 31.83 | | | | | Weight of Dry Soil, gms. | 29.59 | 27.93 | 28.62 | | | | | Weight of Water, gms. | 6.85 | 6.81 | 7.30 | | | | | Water Content, % | 23.1 | 24.4 | 25.5 | | | | | Number of Blows | 41 | 24 | 16 | | | | | Plastic | Limit | | |---------|-------|--| | E-4 | F-6 | | | 52.80 | 53.10 | | | 49.74 | 50.02 | | | 31.79 | 31.92 | | | 17.95 | 18.10 | | | 3.06 | 3.08 | | | 17.0 | 17.0 | | ### **Unified Soil Classification** PL= SC PI= δγχ93ατ ## SPECIFIC GRAVITY ASTM D854 Shaw EMCON/OWT, Inc. A Shaw Group Company PROJ. NAME: MT. VIEW LF. PROJ. NO.: 102094 DATE: SAMPLE NO.: SAMPLE # III DEPTH, FT.: BULK TESTED BY: DGC DESCRIPTION: CLAYEY SAND WITH GRAVEL, BROWN. CORRECTED BY: **LABORATORY MEASUREMENTS:** | TRIAL NUMBER | 1 | 2 | 3 | |--------------------------------|--------|--------|--------| | FLASK NUMBER | A | A | Α | | WEIGHT OF FLASK + WATER + SOIL | 737.8 | 737.1 | 734.6 | | TEMP., DEGREE C | 27.0 | 34.0 | 47.0 | | WEIGHT OF FLASK + WATER | 657.4 | 656.4 | 653.6 | | WEIGHT OF DRY SOIL USED, GRAMS | 130.06 | 130.06 | 130.06 |
SPECIFIC GRAVITY OF WATER: | С | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | 10 | 0.9997 | 0.9966 | 0.9995 | 0.9994 | 0.9993 | 0.9991 | 0.9990 | 0.9988 | 0.9986 | 0.9984 | | 20 | 0.9982 | 0.9980 | 0.9978 | 0.9976 | 0.9973 | 0.9971 | 0.9968 | 0.9965 | 0.9963 | 0.9960 | | 30_ | 0.9957 | 0.9954 | 0.9951 | 0.9947 | 0.9944 | 0.9941 | 0.9937 | 0.9934 | 0.9930 | 0.9926 | | 40 | 0.9922 | 0.9919 | 0.9915 | 0.9911 | 0.9907 | 0.9902 | 0.9898 | 0.9894 | 0.9890 | 0.9885 | **LABORATORY CALCULATIONS:** | TRIAL NUMBER | 1 | 2 | 3 | |-------------------------------|--------|--------|--------| | SPEC. GRAVITY OF WATER @ T | 0.9965 | 0.9944 | 0.9894 | | GT* Ws | 129.60 | 129.33 | 128.68 | | W1 - W2 | 80.40 | 80.70 | 81.00 | | Ws - (W1 - W2) | 49.66 | 49.36 | 49.06 | | Gs = GT * Ws / Ws - (W1 - W2) | 2.61 | 2.62 | 2.62 | Average Specific Gravity: 2.62 ὸγχ93σπγ ### **COMPACTION TEST ASTM D1557** EMCON/OWT, Inc. **ASTM D698** Checked By: A Shaw Group Company 102094 MT. VIEW LF. Lab. No.: 04-076 Project Name: Proj. No.: Sample No.: SAMPLE # III Depth, ft.: BULK Tested By: DGC CLAYEY SAND WITH GRAVEL, BROWN. 11/10/04-Description: Date: 12" Vol., Mold, cf.: 0.03333 Hammer Weight.: 5.5 lbs. Hammer Drop: Blows/Layer: 25 **ASTM** Designation: No. of Layers: "B" Method: Nat. Trial Number Ċ Container Number M-7 $\overline{\mathbf{B}}$ A-1 Wet Soil + Container 958.40 782.50 777.70 921.50 (gms.) 710.80 695.90 819.70 Dry Soil + Container (gms.) 885.80 111.50 110,20 Container Weight 85.40 181.50 (gms.) Weight of Water 72.60 71.70 81.80 101.80 (gms.) Weight of Dry Soil 800.40 599.30 585.70 638.20 (gms.) **Moisture Content** (%) 9.1 12.0 14.0 16.0 3853 3870 Wet Soil + Mold 3674 3835 (gms.) Weight of Mold 1851 1851 1851 (gms.) 1851 Wet Weight of Soil 4.02 4.45 (lbs.) 4.41 4.37 Wet Unit Weight (pcf.) 120.6 132.4 133.5 131.2 Dry Unit Weight 118.3 117.2 (pcf.) 110.5 113.2 Maximum Dry Density, pcf.: 118.7 Opt. Moisture Content, %: 12.5 ## HYDRAULIC CONDUCTIVITY **ASTM D5084** A Shaw Group Company EMCON/OWT, Inc. PROJECT NAME: MOUNTAIN VIEW LANDFILL LAB. NUMBER: 04-076 SAMPLE NUMBER: PROJECT NUMBER: 102094 DESCRIPTION: SAMPLE # III SAMPLE DEPTH: REMOLDED DATE: 11/19/04 CHECKED BY: CLAYEY SAND WITH GRAVEL, BROWN. TESTED BY: DGC | | Remolded | to 90% of 1 | nax. dry de | ensity (ASTM D698) at opt2% water | content. | | |------------------|----------------|---------------|-------------|-----------------------------------|----------|--------| | SAMPLE DA | BEFORE
TEST | AFTER
TEST | OVEN DRY | | | | | DIAMETER | (cm) | 7.28 | 7.22 | TARE NUMBER | | D-1 | | неіснт | (cm) | 6.40 | 6.40 | WT. OF TARE+WET SOIL | (gm) | 623.50 | | VOLUME | (cc) | 266.264 | 261.893 | WT. OF TARE+DRY SOIL | (gm) | 536.20 | | WT. OF WET SOIL | (gm) | 503.5 | 542.5 | WT. OF TARE | (gm) | 81.00 | | WT. OF DRY SOIL | (gm) | 455.2 | 455.2 | WT. OF WATER | (gm) | 87.30 | | WT. OF WATER | (gm) | 48.3 | 87.30 | WT, OF DRY SOIL | (gm) | 455.2 | | MOISTURE CONTENT | (° 0) | 10.6 | 19.2 | WATER CONTENT | (%) | 19.2 | | DRY DENSITY | (pct) | 106.68 | 108.46 | LAB. MAX. DRY DENSITY | (pct) | 118.7 | | VOID RATIO | (e) | 0.53 | 0.51 | OPT. WATER CONTENT | (%) | 12.5 | | SATURATION | . (8) | 52.2 | 99.0 | RELATIVE COMPACTION | (%) | 90 | | POROSITY | (h) | 0.3475 | 0.3366 | SPECIFIC GRAVITY | (est.) | 2.62 | PRESSURE DATA DURING PERMEABILITY TEST: "B" parameter 0.98 Area of Burette: CONFINING PRESS. 55 _psi **Temp. Correction:** 0.976 BACK PRESS. (bot) 50 psi BACK PRESS. (top) 50 21 °C AVERAGE CONSOL. PRESSURE: 5.0 PERMEANT: TAP WATER | DATE | TIME | ELAPSED | STATUS | BURETTE READING | | | | | DING | |-------------|-------|---------|--------|-----------------|--------|--------|--------|---------------|---------------------------------------| | ĺ | | TIME | RESET | ТОР | - | вотто | OM | CHAMBER | COMMENTS | | · _ | | (sec) | | PRESS. | (psi.) | PRESS. | (psi.) | PRESS.,(psi.) | | | SATURATION | : | | | | | | | | Skempton's "B" | | 11/19/2004 | 7:43 | | | 50.0 | | 50.0 | 50.0 | | 49.8 | | 11/19/2004 | 12:17 | | | | | 1 | • | | 59.6 | | CONSOLIDAT | ION: | | | TOP | ΔΤ | вот. | ΛВ | CHAMBER | | | | | | | (cm) | (cm.) | (cm) | (cm.) | (cm) | | | PERMEABILI | TY: | | | | | | | | | | 11/22/2004 | 6;06 | RESET | R | 1.7 | | 39.6 | | 13.6 | Hydraulic Cond., (cm/sec.) | | 11/22/2004 | 6:17 | (660) | | 12.4 | | 28.8 | | 13.6 | 5.8E-05 | | .11/22/2004 | 6:18 | RESET | R | 1.7 | | 38.7 | | 13.6 | Hydraulic Cond., (cm/sec.) | | 11/22/2004 | 6:29 | 660 | | 12.0 | | 28.5 | | 13.5 | 5.6E-05 | | 11/22/2004 | 6:30 | RESET | R | 1.7 | | 39.6 | | 13.5 | Hydraulic Cond., (cm/sec.) | | 11/22/2004 | 6:41 | 660 | | 12.1 | | 29.2 | | 13.5 | 5.5E-05 | | 11/22/2004 | 6:42 | RESET | R | 1.6 | | 39.6 | | 13.5 | Hydraulic Cond., (cm/sec.) | | 11/22/2004 | 6:53 | 660 | | 12.0 | | 29.2 | | 13.5 | 5.5E-05 | | 11/22/2004 | 6:54 | RESET | R | 1.7 | | 39,6 | | . 13.5 | Hydraulic Cond., (cm/sec.) | | 11/22/2004 | 7:05 | 660 | | 12.1 | | 29.2 | | 13.5 | 5.5E-05 | | | | | | | | | | | | · | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | δγχ93πμ | # MOISTURE - DENSITY TEST ASTM D2216 | PROJECT NAME: | BLAND F | ILL | | | | DATE: | 3/10/98 | |--------------------|---------------|-------------|--|----------------|---|--|--| | PROJ. NUMBER: | 22045-013 | .002 | TE | STED BY: | RMM | CORRECTED BY: | DGC | | | | | • | | | • | | | REFERENCE NUMB | ER: | 1 | 2 | 3 | 4 | | | | SAMPLE NUMBER: | | CORE#1 | CORE#2 | CORE#3 | CORE#4 | | | | SPECIFIC GRAVITY | , EST. | 2.70 | 2.70 | 2.70 | 2.70 | | | | DEPTH, | (feet) | | | | | | | | DIAMETER, | (inches) | 2.875 | | 2.875 | 2.866 | | | | LENGHT, | (inches) | 3.65 | | 3.92 | 2.85 | | | | VOLUME, | (cu. feet) | 0.013712 | | 0.014727 | 0.010627 | | | | | | | | | · | | | | WATER CONTENT | DETERM | NATION: | , | | | | | | TARE NUMBER: | | Q | #14 | A | X-20 | | | | WET WT. + TARE, | (gms.) | 920.00 | 691.20 | 949.60 | 638.00 | | | | DRY WT. + TARE, | (gms.) | 758.10 | 611.60 | 78 0.00 | 499.30 | | | | WT. OF TARE, | (gms.) | 185.54 | 167.40 | 180.90 | 90.30 | | | | WT. OF WATER, | (gms.) | 161.90 | 79.60 | 169.60 | 138.70 | | | | WT. OF DRY SOIL, | (gms.) | 572.56 | 444.20 | 599.10 | 409.00 | | | | WATER CONTENT, | (%) | 28.3 | 17.9 | 28.3 | 33.9 | | | | DENSITY DETERM | IINATION: | | | | | | | | TOTAL WET WT., | (gms.) | 734.46 | | 768.70 | 547.70 | | | | WET DENSITY | (pcf.) | 118.1 | | 115.1 | 113.6 | | | | DRY DENSITY, | (pcf.) | 92.1 | | 89.7 | 84.8 | | | | VOID RATIO, | (e) | 0.8303 | | 0.8786 | 0.9857 | | , | | POROSITY, | (η) | 0.4536 | | 0.4677 | 0.4964 | | | | USCS and or Visual | Classificatio | n: | | | | | | | 1 SILTY CL | AY, LIGHT | BROWN. | | | | | | | 2 SILTY CL | AY, LIGHT | BROWN. | | | | | ····· | | | AY, BROW | | | | | ······································ | | | | | | | ···· | | · · · · · · · · · · · · · · · · · · · | | | | | | | - | | | | | | | | | | • | | , -, , , , , , , , , , , , , , , , , , | | | | | —————————————————————————————————————— | | | ······································ | | | NOTE: A specific | gravity of 2. | 7 was used | in calculati | ing porosity | | | | | | | | | | | | | | | | | | | | | | | | | | | . : | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | δγχ93μχδδ | **ASTM D422** LAB#: 98-025 PROJECT NO.: 22045-013.002 PROJ. NAME: BLAND FILL **TESTED BY: RMM** SAMPLE NO.: BUCKET-2 DEPTH, FT.: BULK 3/5/98 **DESCRIPTION:** CLAYEY SAND, BROWN WITH GRAVELS, SOME ROOTS. DATE: CHECKED BY: **MOISTURE CONTENT DETERMINATION:** DGC #43 PAN ID (gm) 1224.97 1676.50 TOTAL DRY WEIGHT: PAN+WET SOIL (gm) TOTAL DRY WEIGHT USED FOR HYDROM.: 1400.70 PAN+DRY SOIL (gm) HYDROMETER & TEMP. CORRECTION: **PAN WEIGHT** 175.73 (gm) DRY SOIL 1224.97 (gm) % MOISTURE 22.5 (%) | 70,110,101,01 | PARTICLE | DIAMETER | WEIGHT | ACCUMULATED | WEIGHT | PERCENT | |-----------------|----------|------------|-------------|---------------|---------|---------| | SIEVE SIZE | INCHES | MILLIMETER | RETAINED | WGT. RETAINED | PASSING | PASSING | | (U.S. STANDARD) | (inch.) | (mm) | (gm) | (gm) | (gm) | | | 5" | , , | | | | 1224.97 | 100.0 | | 3" | 3.0 | 76.2 | | | 1224.97 | 100.0 | | 1 1/2" | 1.5 | 38.1 | | | 1224.97 | 100.0 | | 3/4" | 0.7 | 18.9 | 79.61 | 79.61 | 1145.36 | 93.5 | | 3/8" | 0.371 | 9.42 | 98.28 | 177.89 | 1047.08 | 85.5 | | #4 | 0.185 | 4.70 | 72.63 | 250.52 | 974.45 | 79.5 | | #8 | 0.093 | 2.36 | 61.80 | 312.32 | 912.65 | 74.5 | | #16 | 0.046 | 1.17 | 43.55 | 355.87 | 869.10 | 70.9 | | #30 | 0.0232 | 0.59 | 36.13 | 392.00 | 832.97 | 68.0 | | #50 | 0.0116 | 0.30 | 38.44 | 430.44 | 794.53 | 64.9 | | #100 | 0.0058 | 0.15 | 75.37 | 505.81 | 719.16 | 58.7 | | #200 | 0.0029 | 0.07 | 135.94 | 641.75 | 583.22 | 47.6 | | | | 0.037 | | | | | | | | 0.019 | | | | | | HYDROM | ETER: | 0.009 | | | | | | | | 0.005 | | | | | | | | 0.002 | | | | | | I | | 0.001 | | | | | δγχ93σω ### **ASTM D422** PROJ. NAME: PROJECT NO.: 22045-013.002 **BLAND FILL** SAMPLE NO.: DEPTH, FT.: BULK **BUCKET-3** LAB#: 98-025 TESTED BY: RMM **DESCRIPTION:** SANDY CLAY, BROWN SOME GRAVELS AND ROOTS. DATE: 3/5/98 δγχ93σω. DGC **MOISTURE CONTENT DETERMINATION:** Y-6 PAN ID (gm) PAN+WET SOIL 1011.10 (gm) 801.80 PAN+DRY SOIL (gm) 57.14 **PAN WEIGHT** (gm) TOTAL DRY WEIGHT: 744.66 CHECKED BY: TOTAL DRY WEIGHT USED FOR HYDROM.: HYDROMETER & TEMP. CORRECTION: DRY SOIL 744.66 (gm) % MOISTURE 28.1 (%) | | PARTICLE | DIAMETER | WEIGHT | ACCUMULATED | WEIGHT | PERCENT | |-----------------|----------|------------|----------|---------------
---------|---------| | SIEVE SIZE | INCHES | MILLIMETER | RETAINED | WGT. RETAINED | PASSING | PASSING | | (U.S. STANDARD) | (inch.) | (mm) | (gm) | (gm) | (gm) | | | 5" | | | | | 744.66 | 100.0 | | 1" | 3.0 | 76.2 | | | 744.66 | 100.0 | | 3/4" | 1.5 | 38.1 | | | 744.66 | 100.0 | | 1/2" | 0.7 | 18.9 | | | 744.66 | 100.0 | | 3/8" | 0.371 | 9.42 | 13.42 | 13.42 | 731.24 | 98.2 | | #4 | 0.185 | 4.70 | 16.95 | 30.37 | 714.29 | 95.9 | | #8 | 0.093 | 2.36 | 15.49 | 45.86 | 698.80 | 93.8 | | #16 | 0.046 | 1.17 | 9.30 | 55.16 | 689.50 | 92.6 | | #30 | 0.0232 | 0.59 | 6.51 | 61.67 | 682.99 | 91.7 | | #50 | 0.0116 | 0.30 | 7.30 | 68.97 | 675.69 | 90.7 | | #100 | 0.0058 | 0.15 | 13.03 | 82.00 | 662.66 | 89.0 | | #200 | 0.0029 | 0.07 | 41.02 | 123.02 | 621.64 | 83.5 | | | | 0.037 | | | | | | | [| 0.019 | | | | | | HYDROM | ETER: | 0.009 | | | | | | | [| 0.005 | | | | | | | [| 0.002 | | | | | | | | 0.001 | | | | | % MOISTURE 30.3 (%) # **GRAIN SIZE DISTRIBUTION** **ASTM D422** PROJ. NAME: BLAND FILL PROJECT NO.: 22045-013.002 LAB #: 98-025 SAMPLE NO.: BUCKET-4 DEPTH, FT.: BULK TESTED BY: RMM DESCRIPTION: SILTY CLAY, BROWN SOME SAND AND ROOTS. DATE: 3/5/98 DGC δγχ93σπ. MOISTURE CONTENT DETERMINATION: CHECKED BY: PAN ID #86 (gm) PAN+WET SOIL 801.40 TOTAL DRY WEIGHT: 555.08 (gm) PAN+DRY SOIL 633.30 TOTAL DRY WEIGHT USED FOR HYDROM.: (gm) **PAN WEIGHT** 78.22 HYDROMETER & TEMP. CORRECTION: (gm) 555.08 DRY SOIL (gm) | | PARTICLE | DIAMETER | WEIGHT | ACCUMULATED | WEIGHT | PERCENT | |-----------------|----------|------------|----------|---------------|---------|---------| | SIEVE SIZE | INCHES | MILLIMETER | RETAINED | WGT. RETAINED | PASSING | PASSING | | (U.S. STANDARD) | (inch.) | (mm) | (gm) | (gm) | (gm) | | | 5" | • | | | | 555.08 | 100.0 | | 1" | 3.0 | 76.2 | | | 555.08 | 100.0 | | 3/4" | 1.5 | 38.1 | | | 555,08 | 100.0 | | 1/2" | 0.7 | 18.9 | | | 555.08 | 100.0 | | 3/8" | 0.371 | 9.42 | | | 555.08 | 100.0 | | #4 | 0.185 | 4.70 | | T. | 555.08 | 100.0 | | #8 | 0.093 | 2.36 | 0.37 | 0.37 | 554.71 | 99.9 | | #16 | 0.046 | 1.17 | 0.59 | 0.96 | 554.12 | 99.8 | | #30 | 0.0232 | 0.59 | 0.78 | 1.74 | 553.34 | 99.7 | | #50 | 0.0116 | 0.30 | 1.06 | 2.80 | 552.28 | 99.5 | | #100 | 0.0058 | 0.15 | 2.21 | 5.01 | 550.07 | 99.1 | | #200 | 0.0029 | 0.07 | 17.57 | 22.58 | 532.50 | 95.9 | | | | 0.037 | | | | | |] | | 0.019 | | | | | | HYDROM | ETER: | 0.009 | | | | | | | | 0.005 | | | | | | | | 0.002 | | | | | | | | 0.001 | | | | | ASTM D422 PROJECT NO.: 22045-013.002 LAB#: 98-025 PROJ. NAME: BLAND FILL RMM SAMPLE NO.: DEPTH, FT.: BULK TESTED BY: BUCKET-SK1 **DESCRIPTION:** CLAYEY SAND, BROWN WITH GRAVELS. DATE: 3/10/98 MOISTURE CONTENT DETERMINATION: CHECKED BY: DGC PAN ID #82 (gm) 992.10 **PAN+WET SOIL** (gm) **TOTAL DRY WEIGHT:** 828.60 PAN+DRY SOIL (gm) TOTAL DRY WEIGHT USED FOR HYDROM.: HYDROMETER & TEMP. CORRECTION: 76.22 **PAN WEIGHT** (gm) DRY SOIL 752.38 (gm) % MOISTURE 21.7 (%) | / IVACIDA URAS | #1.7 | (/0) | | | | | |-----------------|----------|------------|----------|---------------|---------|---------| | | PARTICLE | DIAMETER | WEIGHT | ACCUMULATED | WEIGHT | PERCENT | | SIEVE SIZE | INCHES | MILLIMETER | RETAINED | WGT. RETAINED | PASSING | PASSING | | (U.S. STANDARD) | (inch.) | (mm) | (gm) | (gm) | (gm) | | | 5" | | | | | 752.38 | 100.0 | | 3" | 3.0 | 76.2 | | | 752.38 | 100.0 | | 1 1/2" | 1.5 | 38.1 | | | 752.38 | 100.0 | | 3/4" | 0.7 | 18.9 | 17.80 | 17.80 | 734.58 | 97.6 | | 3/8" | 0.371 | 9.42 | 73.96 | 91.76 | 660.62 | 87.8 | | #4 | 0.185 | 4.70 | 54.49 | 146.25 | 606.13 | 80.6 | | #8 | 0.093 | 2.36 | 34.30 | 180.55 | 571.83 | 76.0 | | #16 | 0.046 | 1.17 | 27.16 | 207.71 | 544.67 | 72.4 | | #30 | 0.0232 | 0.59 | 26.72 | 234.43 | 517.95 | 68.8 | | #50 | 0.0116 | 0.30 | 27.49 | 261.92 | 490.46 | 65.2 | | #100 | 0.0058 | 0.15 | 58.37 | 320.29 | 432.09 | 57.4 | | #200 | 0.0029 | 0.07 | 76.50 | 396.79 | 355.59 | 47.3 | | | | 0.037 | | | | | | l . | | 0.019 | | | | | | HYDROM | IETER: | 0.009 | | | | | | | | 0.005 | | | | | | | | 0.002 | | | - | | | | | 0.001 | | | | | δγχ93σφ. ASTM D422 PROJECT NO.: 22045-013.002 LAB#: 98-025 **BLAND FILL TESTED BY:** RMM SAMPLE NO.: BUCKET-SK2 DEPTH, FT.: BULK **DESCRIPTION:** CLAYEY SAND, BROWN WITH GRAVELS. DATE: 3/5/98 **MOISTURE CONTENT DETERMINATION:** CHECKED BY: DGC PAN ID #82 (gm) 1140.70 TOTAL DRY WEIGHT: 912.61 **PAN+WET SOIL** (gm) TOTAL DRY WEIGHT USED FOR HYDROM.: HYDROMETER & TEMP. CORRECTION: δγχ93σω. PAN+DRY SOIL 988.80 (gm) PAN WEIGHT 76.19 (gm) DRY SOIL 912.61 (gm) % MOISTURE 16.6 (%) | % MOISTURE | 10.0 | (70) | | | | | |-----------------|----------|------------|----------|---------------|---------|---------| | | PARTICLE | DIAMETER | WEIGHT | ACCUMULATED | WEIGHT | PERCENT | | SIEVE SIZE | INCHES | MILLIMETER | RETAINED | WGT. RETAINED | PASSING | PASSING | | (U.S. STANDARD) | (inch.) | (mm) | (gm) | (gm) | (gm) | | | 5" | | | | | 912.61 | 100.0 | | 3" | 3.0 | 76.2 | | | 912.61 | 100.0 | | 1 1/2" | 1.5 | 38.1 | | | 912,61 | 100.0 | | 3/4" | 0.7 | 18.9 | 55.29 | 55.29 | 857.32 | 93.9 | | 3/8" | 0.371 | 9.42 | 79.43 | 134,72 | 777.89 | 85.2 | | #4 | 0.185 | 4.70 | 74.66 | 209.38 | 703.23 | 77.1 | | #8 | 0.093 | 2.36 | 57.67 | 267.05 | 645.56 | 70.7 | | #16 | 0.046 | 1.17 | 39.75 | 306.80 | 605.81 | 66.4 | | #30 | 0.0232 | 0.59 | 36.07 | 342.87 | 569.74 | 62.4 | | #50 | 0.0116 | 0.30 | 40.87 | 383.74 | 528.87 | 58.0 | | #100 | 0.0058 | 0.15 | 62.52 | 446.26 | 466.35 | 51.1 | | #200 | 0.0029 | 0.07 | 63.28 | 509.54 | 403.07 | 44.2 | | | | 0.037 | | | | | | | | 0.019 | | | | | | HYDROM | IETER: | 0.009 | | | | | | | | 0.005 | | | | | | <u> </u> | | 0.002 | | | | | | · | _ | 0.001 | | | | | ASTM D422 PROJ. NAME: BLAND FILL PROJECT NO.: 22045-013.002 SAMPLE NO.: BUCKET-SK3 DEPTH, FT.: BULK TEST LAB #: 98-025 TESTED BY: RMM DATE: 3/10/98 δγχ93σπ. DESCRIPTION: SANDY CLAY, BROWN, SOME GRAVELS. MOISTURE CONTENT DETERMINATION: CHECKED BY: DGC PAN ID #93 (gm) PAN+WET SOIL 1068.30 (gm) PAN+DRY SOIL 886.60 (gm) PAN WEIGHT 176.17 (gm) TOTAL DRY WEIGHT: _______TOTAL DRY WEIGHT USED FOR HYDROM.: HYDROMETER & TEMP. CORRECTION: DRY SOIL 710.43 (gm) | % MOISTURE | 25.6 | (%) | | | | | |-----------------|----------|------------|----------|---------------|---------|----------| | 1 | PARTICLE | DIAMETER | WEIGHT | ACCUMULATED | WEIGHT | PERCENT | | SIEVE SIZE | INCHES | MILLIMETER | RETAINED | WGT. RETAINED | PASSING | PASSING | | (U.S. STANDARD) | (inch.) | (mm) | (gm) | (gm) | (gm) | <u> </u> | | 5* | | | | | 710.43 | 100.0 | | 3" | 3.0 | 76.2 | | | 710.43 | 100.0 | | 1 1/2" | 1.5 | 38.1 | | | 710.43 | 100.0 | | 3/4" | 0.7 | 18.9 | | | 710.43 | 100.0 | | 3/8° | 0.371 | 9.42 | 28.69 | 28.69 | 681.74 | 96.0 | | #4 | 0.185 | 4.70 | 28.54 | 57.23 | 653.20 | 91.9 | | #8 | 0.093 | 2.36 | 23.09 | 80.32 | 630.11 | 88.7 | | #16 | 0.046 | 1.17 | 15.36 | 95.68 | 614.75 | 86.5 | | #30 | 0.0232 | 0.59 | 17.17 | 112.85 | 597.58 | 84.1 | | #50 | 0.0116 | 0.30 | 21.85 | 134.70 | 575.73 | 81.0 | | #100 | 0.0058 | 0.15 | 43.33 | 178.03 | 532.40 | 74.9 | | #200 | 0.0029 | 0.07 | 48.31 | 226.34 | 484.09 | 68.1 | | | | 0.037 | | | | | | 1 | + | 0.019 | | | | | | HYDRON | ÆTER: | 0.009 | | | | | | 1 | | 0.005 | | | | | | | | 0.002 | | | | | | | | 0.001 | | | | | ASTM D422 PROJECT NO.: 22045-013.002 LAB#: **BLAND FILL** DEPTH, FT.: BULK SAMPLE NO.: **BUCKET-SK4** 98-025 TESTED BY: RMM DATE: 3/10/98 DGC δγχ93σπ. CHECKED BY: **MOISTURE CONTENT DETERMINATION:** #94 PAN ID (gm) PAN+WET SOIL 1502.70 (gm) PAN+DRY SOIL 1290.60 (gm) PAN WEIGHT 176.24 (gm) DRY SOIL 1114.36 (gm) DESCRIPTION: CLAYEY GRAVEL, BROWN WITH SAND. TOTAL DRY WEIGHT: TOTAL DRY WEIGHT USED FOR HYDROM: HYDROMETER & TEMP. CORRECTION: | % MOISTURE | 19.0 | (%) | | | | | |-----------------|----------|------------|----------|---------------|---------|---------| | | PARTICLE | DIAMETER | WEIGHT | ACCUMULATED | WEIGHT | PERCENT | | SIEVE SIZE | INCHES | MILLIMETER | RETAINED | WGT. RETAINED | PASSING | PASSING | | (U.S. STANDARD) | (inch.) | (mm) | (gm) | (gm) | (gm) | 1 | | 5" | | | | | 1114.36 | 100.0 | | 3" | 3.0 | 76.2 | | | 1114.36 | 100.0 | | 1 1/2" | 1.5 | 38.1 | | | 1114.36 | 100.0 | | 3/4" | 0.7 | 18.9 | 118.09 | 118.09 | 996.27 | 89.4 | | 3/8" | 0.371 | 9.42 | 170.29 | 288.38 | 825.98 | 74.1 | | #4 | 0.185 | 4.70 | 111.32 | 399.70 | 714.66 | 64.1 | | #8 | 0.093 | 2.36 | 79.68 | 479.38 | 634.98 | 57.0 | | #16 | 0.046 | 1.17 | 56.81 | 536.19 | 578.17 | 51.9 | | #30 | 0.0232 | 0.59 | 50.32 | 586.51 | 527.85 | 47.4 | | #50 | 0.0116 | 0.30 | 57.88 | 644.39 | 469.97 | 42.2 | | #100 | 0.0058 | 0.15 | 60.10 | 704.49 | 409.87 | 36.8 | | #200 | 0.0029 | 0.07 | 59.02 | 763.51 | 350.85 | 31.5 | | | | 0.037 | | | | I | | | | 0.019 | | | | | | HYDROM | ETER: | 0.009 | | | | | | | | 0.005 | | | | | | | | 0.002 | | | | | | | | 0.001 | | | | | **ASTM D4318** Project Name: **BLAND FILL** Lab. No.: 98-025 Proj. No.: 22045-013.002 Sample No.: BUCKET #2 Depth, ft.: Date: 3/5/98 Description: CLAYEY SAND, BROWN WITH GRAVELS, SOME ROOTS OOTS Tested By: RMM Checked By: DGC | | Liquid Limit | | | | |---------------------------------|--------------|-------|-------|--| | Can Number | #11 | #7 | #8 | | | Weight of Can + Wet Soil, gms. | 75.97 | 69.70 | 69.64 | | | Weight of Cam + Dry Soff, guns. | 65.47 | 60.42 | 59.67 | | | Weight of Can, gms. | 25.89 | 27.63 | 27.72 | | | Weight of Dry Soil, gans. | 39.58 | 32.79 | 31.95 | | | Weight of Water, gms. | 10.50 | 9.28 | 9.97 | | | Water Content, % | 26.5 | 28.3 | 31.2 | | | Number of Blows | 31 | 18 | 7 | | | Plastic Limit | | | | |---------------|---|--|--| | #15 | | | | | 46.34 | | | | | 43.53 | | | | | 27.91 | | | | | 15.62 | | | | | 2.81 | | | | | 18.0 | | | | | | #15
46.34
43.53
27.91
15.62
2.81 | | | ### **Unified Soil Classification** SC **ASTM D4318** Project Name: **BLAND FILL** Lab. No.: 98-025 Proj. No.: 22045-013.002 Sample No.: Description: BUCKET #3 Depth, ft.: **Date:** 3/5/98 SANDY CLAY, BROWN, SOME GRAVELS AND ROOTS. Tested By: RMM Checked By:
DGC | | Liquid Limit | | | | |--------------------------------|--------------|-------|-------|--| | Can Number | #6 | F | #12 | | | Weight of Cam + Wet Soil, gms. | 74.42 | 73.48 | 67.60 | | | Weight of Can + Dry Soil, gms. | 61.66 | 60.36 | 55.67 | | | Weight of Can, gms. | 26.79 | 26.23 | 26.63 | | | Weight of Dry Soil, gms. | 34.87 | 34.13 | 29.04 | | | Weight of Water, gms. | 12.76 | 13.12 | 11.93 | | | Water Content, % | 36.6 | 38.4 | 41.1 | | | Number of Blows | 31 | 19 | 9 | | | Plastic Limit | | |---------------|--| | #4 | | | 44.36 | | | 41.66 | | | 27.89 | | | 13.77 | | | 2.70 | | | 19.6 | | | | #4
44.36
41.66
27.89
13.77
2.70 | ### **Unified Soil Classification** CL **ASTM D4318** Project Name: **BLAND FILL** Lab. No.: 98-025 Proj. No.: 22045-013.002 Sample No.: **BUCKET #4** Depth, ft.: Date: 3/5/98 Description: SILTY CLAY, BROWN, SOME SAND AND ROOTS. Tested By: RMM Checked By: DGC | | Liquid Limit | | | | |--------------------------------|--------------|-------|-------|--| | Can Number | #10 | #89 | #1 | | | Weight of Can + Wet Soll, gms. | 71.35 | 66.13 | 67.67 | | | Weight of Cam + Dry Sofi, gms. | 58.13 | 53.93 | 55.01 | | | Weight of Can, gms. | 28.29 | 27.27 | 27.55 | | | Weight of Dry Soll, guss. | 29.84 | 26.66 | 27.46 | | | Weight of Water, gms. | 13.22 | 12.20 | 12.66 | | | Water Content, % | 44.3 | 45.8 | 46.1 | | | Number of Blows | 28 | 13 | 10 | | | Plastic Limit | | |---------------|--| | В | | | 3 41.73 | | | 7 39.03 | | | 2 26.87 | | | 5 12.16 | | | 2.70 | | | 22.2 | | | | 3 41.73
7 39.03
2 26.87
5 12.16
2.70 | ### Unified Soil Classification CL **ASTM D4318** Project Name: Sample No.: Description: **BLAND FILL** Lab. No.: 98-025 Proj. No.: 22045-013.002 **BUCKET SK1** Depth, ft.: 3/10/98 Date: CLAYEY SAND, BROWN WITH GRAVELS. Tested By: RMM Checked By: DGC | | Liquid Limit | | | | |--------------------------------|--------------|-------|-------|--| | Can Number | #6 | #12 | #3 | | | Weight of Can + Wet Soil, gma. | 72.85 | 73.41 | 75.61 | | | Weight of Can + Dry Soll, gms. | 62.78 | 62.64 | 63.54 | | | Weight of Can, gma. | 26.75 | 26.63 | 26.49 | | | Weight of Dry Soft, gms. | 36.03 | 36.01 | 37.05 | | | Weight of Water, gms. | 10.07 | 10.77 | 12.07 | | | Water Content, % | 27.9 | 29.9 | 32.6 | | | Number of Blows | 35 | 22 | 10 | | | Plastic Limit | | | |---------------|---|--| | #14 | | | | 47.78 | | | | 44.73 | | | | 27.88 | | | | 16.85 | | | | 3.05 | | | | 18.1 | | | | | #14
47.78
44.73
27.88
16.85
3.05 | | ### **Unified Soil Classification** SC **ASTM D4318** Project Name: **BLAND FILL** Lab. No.: 98-025 Proj. No.: 22045-013.002 Sample No.: **BUCKET SK2** Depth, ft.: Date: 3/5/98 Description: CLAYEY SAND, BROWN WITH GRAVELS. RMM Tested By: Checked By: DGC | | Liquid Limit | | | |--------------------------------|--------------|-------|-------| | Can Number | D | E | G | | Weight of Can + Wet Soil, gms. | 71.12 | 74.96 | 72.07 | | Weight of Can + Dry Soll, gms. | 61.76 | 64.45 | 61.82 | | Weight of Can, gms. | 26.41 | 26.90 | 27.46 | | Weight of Dry Soil, gms. | 35.35 | 37.55 | 34.36 | | Weight of Water, gms. | 9.36 | 10.51 | 10.25 | | Water Content, % | 26.5 | 28.0 | 29.8 | | Number of Blows | 42 | 24 | 12 | | Plastic Limit | | | |---------------|-------|--| | #13 | C | | | 45.33 | 42.26 | | | 42.82 | 39.94 | | | 27.87 | 26.24 | | | 14.95 | 13.70 | | | 2.51 | 2.32 | | | 16.8 | 16.9 | | | | | | ### **Unified Soil Classification** SC δγχ93αττ. **ASTM D4318** Project Name: Sample No.: **BLAND FILL** Lab. No.: 98-025 Proj. No.: 22045-013.002 **BUCKET SK3** Depth, ft.: **Date:** 3/10/98 Description: SANDY CLAY, BROWN, SOME GRAVELS. Tested By: RMM Checked By: DGC | | | Liquid Limit | | |--------------------------------|-------|--------------|-------| | Can Number | #10 | #1 | #16 | | Weight of Can + Wet Soil, gms. | 79.67 | 79.84 | 71.15 | | Weight of Can + Dry Soll, gms. | 67.34 | 67.11 | 59.71 | | Weight of Cam, gms. | 28.28 | 28.55 | 26.72 | | Weight of Dry Soff, gms. | 39.06 | 38.56 | 32.99 | | Weight of Water, gma. | 12.33 | 12.73 | 11.44 | | Water Content, % | 31.6 | 33.0 | 34.7 | | Number of Blows | 25 | 15 | 9 | | Plastic Limit | | | |---------------|-------|--| | #89 | В | | | 42.21 | 44.67 | | | 39.88 | 41.82 | | | 27.26 | 26.87 | | | 12.62 | 14.95 | | | 2.33 | 2.85 | | | 18.5 | 19.1 | | ### **Unified Soil Classification** CL δγχ93αττ. **ASTM D4318** Project Name: Sample No.: **BLAND FILL** Lab. No.: 98-025 Proj. No.: 22045-013.002 BUCKET SK4 Depth, ft.: Date: 3/10/98 sted By: RMM **Description:** CLAYEY GRAVEL, BROWN WITH SAND. Tested By: Checked By: DGC | | | Liquid Limit | | |---------------------------------|-------|--------------|-------| | Can Number | G | #13 | E | | Weight of Can + Wet Soil, gans. | 77.51 | 78.52 | 71.24 | | Weight of Can + Dry Soil, gms. | 67.23 | 67.60 | 60.92 | | Weight of Can, gms. | 27.46 | 27.87 | 26.90 | | Weight of Dry Sofi, gms. | 39.77 | 39.73 | 34.02 | | Weight of Water, gms. | 10.28 | 10.92 | 10.32 | | Water Content, % | 25.8 | 27.5 | 30.3 | | Number of Blown | 35 | 18 | 7 | | Plastic Limit | | | |---------------|-------|--| | С | D | | | 46.51 | 42.65 | | | 43.51 | 40.26 | | | 26.24 | 26.43 | | | 17.27 | 13.83 | | | 3.00 | 2.39 | | | 17.4 | 17.3 | | | | | | ### **Unified Soil Classification** GC | COMPACTION TEST ASTM D698 ASTM D1557 Project Name: BLAND FILL Proj. No.: BUCKET SK 2 Depth, ft.: Description: CLAYEY SAND, BROWN WITH GRAVELS. Vol., Mold, cf.: No. of Layers: Blows/Layer: Blows/Layer: Container Number R-2 Wet Soil + Container (gms.) Container Weight (gms.) 1276.50 1411.60 1411.40 Dry Soil + Container (gms.) Container Weight (gms.) 1201.70 1304.70 1038.90 Container Weight (gms.) 119.00 117.87 117.77 Weight of Water (gms.) 74.80 106.90 102.50 Weight of Dry Soil (gms.) 1082.70 1186.83 921.13 Moisture Content (%) 6.9 9.0 111.1 | signation: "B" 2 A-50 | DGC
98-025
RMM
3/10/98 | |--|--|---------------------------------| | ### ASTM DOTO Project Name: BLAND FILL Proj. No.: 22045-013.002 | Lab. No.: | 98-025
RMM
3/10/98 | | Project Name: BLAND FILL Proj. No.: 22045-013.002 Sample No.: BUCKET SK 2 Depth, ft.: Description: CLAYEY SAND, BROWN WITH GRAVELS. Vol., Mold, cf.: 0.03333 Hammer Weight,: 10.0 lbs. Hammer D No. of Layers: 5 Blows/Layer: 25 ASTM Democration Trial Number -4 -2 Air Dry Container Number R-2 W-4 #69 Wet Soil + Container (gms.) 1276.50 1411.60 1141.40 Dry Soil + Container (gms.) 1201.70 1304.70 1038.90 Container Weight (gms.) 119.00 117.87 117.77 Weight of Water (gms.) 74.80 106.90 102.50 Weight of Dry Soil (gms.) 1082.70 1186.83 921.13 | Lab. No.: | 98-025
RMM
3/10/98 | | Sample No.: BUCKET SK 2 Depth, ft.: | Tested By: Date: rop: 18 signation: B" 2 A-50 | RMM
3/10/98 | | Sample No.: BUCKET SK 2 Depth, ft.: | Date: rop: 18 esignation: "B" 2 A-50 | 3/10/98 | | Description: CLAYEY SAND, BROWN WITH GRAVELS. | rop: <u>18</u> signation: "B" 2 A-50 | | | No. of Layers: 5 Blows/Layer: 25 ASTM Defection Trial Number -4 -2 Air Dry Container Number R-2 W-4 #69 Wet Soil + Container (gms.) 1276.50 1411.60 1141.40 Dry Soil + Container (gms.) 1201.70 1304.70 1038.90 Container Weight (gms.) 119.00 117.87 117.77 Weight of Water (gms.) 74.80 106.90 102.50 Weight of Dry Soil (gms.) 1082.70 1186.83 921.13 | signation:
 "B"
 2
 A-50 | | | Method: Trial Number -4 -2 Air Dry | "B" 2 A-50 | | | Method: Trial Number -4 -2 Air Dry | A-50 | | | Container Number R-2 W-4 #69 Wet Soil + Container (gms.) 1276.50 1411.60 1141.40 Dry Soil + Container (gms.) 1201.70 1304.70 1038.90 Container Weight (gms.) 119.00 117.87 117.77 Weight of Water (gms.) 74.80 106.90 102.50 Weight of Dry Soil (gms.) 1082.70 1186.83 921.13 | | | | Wet Soil + Container (gms.) 1276.50 1411.60 1141.40 Dry Soil + Container (gms.) 1201.70 1304.70 1038.90 Container Weight (gms.) 119.00 117.87 117.77 Weight of Water (gms.) 74.80 106.90 102.50 Weight of Dry Soil (gms.) 1082.70 1186.83 921.13 | | | | Dry Soil + Container (gms.) 1201.70 1304.70 1038.90 Container Weight (gms.) 119.00 117.87 117.77 Weight of Water (gms.) 74.80 106.90 102.50 Weight of Dry Soil (gms.) 1082.70 1186.83 921.13 | | | | Container Weight (gms.) 119.00 117.87 117.77 Weight of Water (gms.) 74.80 106.90 102.50 Weight of Dry Soil (gms.) 1082.70 1186.83 921.13 | 1169.90 | | | Weight of Water (gms.) 74.80 106.90 102.50 Weight of Dry Soil (gms.) 1082.70 1186.83 921.13 | 1046.80 | | | Weight of Dry Soil (gms.) 1082.70 1186.83 921.13 | 118.54 | | | Weight of Dry Soil (gms.) 1082.70 1186.83 921.13 | 123.10 | | | Moisture Content (%) 69 90 111 | 928.26 | | | | 13.3 | | | Wet Soil + Mold (gms.) 3919 4030 4056 | 4002 | | | Weight of Mold (gms.) 1990 1990 1990 | 1990 | | | Wet Weight of Soil (lbs.) 4.25 4.50 4.55 | 4.44 | | | Wet Unit Weight (pcf.) 127.6 134.9 136.6 | 133.1 | | | Dry Unit
Weight (pcf.) 119.3 123.8 123.0 | 117.5 | | | Maximum Dry Density, pcf.: 124.0 | | | | Optimum Moisture Content: 9.5 | _ | | | Est. Specific Gravity: 2.65 | | | #### **COMPACTION TEST** ASTM D698 **ASTM D1557** Checked By: DGC Lab. No.: 98-025 Project Name: **BLAND FILL** 22045-013.002 Proj. No.: Sample No.: SK4 Depth. ft.: Tested By: **RMM** 3/17/98 Description: CLAYEY GRAVEL, BROWN WITH SAND Date: 0.07502 18" Vol., Mold, cf.: Hammer Weight,: Hammer Drop: 10.0 lbs. 56 **ASTM** Designation: No. of Layers: Blows/Layer: Method: Trial Number Air Dry Container Number E-5 W-4 R-2 #66 Wet Soil + Container 1335.90 1170.80 1182.60 1331.30 (gms.) Dry Soil + Container 1297,50 1106,40 1089,00 1195.70 (gms.) Container Weight 117.88 118.97 124.16 (gms.) 118.82 Weight of Water 38.40 64.40 93.60 135.60 (gms.) Weight of Dry Soil 970.03 1071.54 1178.68 988,52 (gms.) **Moisture Content** (%) 12.7 3.3 6.5 9,6 Wet Soil + Mold 7010 7405 7517 7371 (gms. Weight of Mold 2810 2810 2810 (gms.) 2810 Wet Weight of Soil 10.06 (lbs.) 9,26 10.13 10.38 Wet Unit Weight Dry Unit Weight 138.3 134.0 (pcf.) 123.4 135.0 (pcf.) 119.5 126.8 126.2 119.0 Maximum Dry Density, pcf.: 127.3 **Optimum Moisture Content:** 7.8 2.70 Est. Specific Gravity: # PERMEABILITY TEST | | | | | A: | STM D | 5084 | | | | | |----------------|--------------|----------------|---------------|--------------|-----------|---------------------------|------------|--------------|-------------|-------------| | EMCON | | DI AND CH I | | | | | LA | B. NUMBER | 98-031 | | | PROJECT NA | ME: | BLAND FI | LL | | | P | ROJEC | T NUMBER | 22045-013 | .002 | | SAMPLE NUI | WBER: | SK-2 | | | | | SAM | PLE DEPTH | REMOLD | ED | | DESCRIPTIO | N: | CLAYEY SAN | D, BROWN | WITH GR | AVELS. | DATE: 3/26/98 | | | | | | CHECKED B | Y: | | | | | TESTED BY: DGC | | | | | | | * Remoided t | to 90% of max. | dry density a | ut opt. + 29 | % water (| content. | | | | | | | SAMPLE DAT | ľ A | BEFORE | AFTER | | | OVEN | DRY | | | | | | | TEST | TEST | <u> </u> | | | | | | | DIAMETER | | (cm) | 7.28 | 7.21 | | TARE NUM | BER | | | #1 | | HEIGHT | | (cm) | 6.36 | 6.20 | 1 | WT. OF TA | RE+WE? | r soil | (gm) | 628.20 | | VOLUME | | (œ) | 264.6 | 253.01 | 1 | WT. OF TA | RR+DRY | SOIL | (gm) | 555.30 | | WT. OF WET SO | : | (gm) | 530.4 | 549.3 | 1 | WT. OF TA | | | (gm) | 78.90 | | | | / | 476.4 | 476.4 | 1 | | | | | 72.90 | | WT. OF DRY SOI | _ | (gm) | | | ł | WT. OF WA | | | (gm) | | | WT. OF WATER | | (gm) | 54.0 | 72.9 | ł | WT. OF DR | | | (gm) | 476.4 | | MOISTURE CONT | TENT | (%) | 11.3 | 15.3 | } | WATER CO | ONTENT | | (%) | 15.3 | | DRY DENSITY | | (pcf) | 112.3 | 117.5 | 4 | LAB. MAX. | DRY DE | NSITY | (pcf) | 124.0 | | VOID RATIO | | (e) | 0.4719 | 0.4074 | ļ | OPT. WATI | ER CONT | TENT | (%) | 9.5 | | SATURATION | | (s) | 63.7 | 99.5 |] | RELATIVE | СОМРА | CTION | (%) | 91 | | POROSITY | _ | (h) | 0.3206 | 0.2895 | } | SPECIFIC O | GRAVITY | Y | (cst.) | 2.65 | | | PRESSURE I | DATA DURING | PERMEA | BILITY TE | ST: | | | | | | | j | "B" paramete | er | 0.98 | | | Area o | f Burette: | 0.6 | sq. can. | | | | CONFINING | | 55 | psi | | | | | • | | | | BACK PRES | S. (bot) | 51 | psi
psi | | BACK PRESS. (top) 49 psi. | | | | | | | AVERAGE C | ONSOL PRES | SURE: | | 5 | _psi | | | • | | | | PERMEANT | <u> </u> | WATER | | | | | | | | | DATE | TIME | ELAPSED | H | | | | BUR | LETTE READ | ING | | | | | TIME | | TOP | | BOTTO | M | CHAMBER | COMMENTS | 3 | | | <u> </u> | (sec) | (cm) | PRESS. | (pal.) | PRESS. (| peL) | PRESS.,(pal) | | | | SATURATION: | | | | | | | | | Skempton' | s "B" | | 3/26/98 | 7:32 | ļ | | 50.0 | | 50.0 | | 51.0 | 49.9 | | | 3/26/98 | 13:22 | - | | 707 | | 20000 | | 61.0 | 59.7 | | | CONSOLIDAT | ION: | | | TOP | DT | воттом | DB | CHAMBER | | | | PERMEABILIT | v. | | | (cm) | (cm) | (cm) | (cm) | (cm) | | | | 3/27/98 | 6:13 | RESET | | 0.3 | | 39.7 | | 19.9 | PERM., (cr | m/sec) | | 3/27/98 | 7:25 | 4320 | | 9.2 | | 31.0 | | 19.4 | 1.1E-06 | <u> </u> | | 3/27/98 | 8:40 | 4500 | | 16.6 | | 23.7 | | 19.3 | 9.6E-07 | | | 3/27/98 | 9:58 | 4680 | | 22.8 | | 17.4 | | 19.1 | 8.6E-07 | | | 3/27/98 | 11:30 | 5520 | | 29.1 | | 11.0 | | 19.1 | 8.1E-07 | | | 3/27/98 | 12:36 | 3960 | | 33.0 | | 7.2 | | 19.0 | 7.5E-07 | | | 3/27/98 | 13:26 | 3000 | | 35.7 | | 4.4 | | 19.0 | 7.5E-07 | | | 3/27/98 | 14:05 | 2340 | | 37.8 | | 2.3 | | 19.0 | 7.6E-07 | <u> </u> | | | | ļ | <u> </u> | l | | | | l | | | δγχ93πμ | | ### PERMEABILITY TEST **ASTM D5084** | A 100 A 40 | 788 | |----------------|-------| | PROJECT | NAME: | **BLAND FILL** LAB. NUMBER: 98-025 **SAMPLE NUMBER:** PROJECT NUMBER: 22045-013.002 CORE #4 SAMPLE DEPTH: UNDISTURBED **DESCRIPTION:** CHECKED BY: SILTY CLAY, LIGHT BROWN WITH ROOTS. DATE: 3/10/98 TESTED BY: DGC | SAMPLE DA | BEFORE | AFTER | OVEN DRY | | | | |------------------|--------|---------|----------|-----------------------|--------|--------| | | | TEST | TEST | | | | | DIAMETER | (cm) | 7.28 | 7.30 | TARE NUMBER | | x-20 | | HEIGHT | (cm) | 7.23 | 7.23 | WT. OF TARE+WET SOIL | (gm) | 650.00 | | VOLUME | (œ) | 300.795 | 302.45 | WT. OF TARE+DRY SOIL | (gm) | 499.30 | | WT. OF WET SOIL | (gm) | 547.7 | 559.7 | WT. OF TARE | (gm) | 90.30 | | WT. OF DRY SOIL | (gm) | 409.0 | 409.0 | WT. OF WATER | (gm) | 150.70 | | WT. OF WATER | (gm) | 138.7 | 150.7 | WT. OF DRY SOIL | (gm) | 409.0 | | MOISTURE CONTENT | (%) | 33.9 | 36.8 | WATER CONTENT | (%) | 36.8 | | DRY DENSITY | (pcf) | 84.8 | 84.4 | LAB. MAX. DRY DENSITY | (pcf) | | | VOID RATIO | (e) | 0.9857 | 0.9966 | OPT. WATER CONTENT | (%) | | | SATURATION | (s) | 92.9 | 99.8 | RELATIVE COMPACTION | (%) | | | POROSITY | (h) | 0.4964 | 0.4992 | SPECIFIC GRAVITY | (est.) | 2.7 | #### PRESSURE DATA DURING PERMEABILITY TEST: "B" parameter CONFINING PRESS. __psi 0.6 Area of Burette: BACK PRESS. (bot) 51 BACK PRESS. (top) 49 psi. AVERAGE CONSOL. PRESSURE: PERMEANT: WATER | DATE | TIME | ELAPSED | H | BURETTE READING | | | | | | |-------------|-------|---------|------|-----------------|-------|-----------|------------|---------------|------------------| | | | TIME | | ТОР | ı | BOTTON | v i | CHAMBER | COMMENTS | | | | (sec) | (cm) | PRESS. | (pet) | PRESS. (I | ped.) | PRESS.,(psl.) | <u> </u> | | SATURATION | | | | | | | | | Skempton's "B" | | 3/10/98 | 10:07 | | | 50.0 | | 50.0 | | 51.0 | 50.1 | | 3/10/98 | 14:10 | | | | | l | | 61.0 | 60.0 | | CONSOLIDAT | ION: | | | TOP | DΤ | воттом | DB | CHAMBER | | | | | | | (cm) | (cm) | (CTR) | (cut) | (cm) | | | PERMEABILIT | Y: | | | | | | | | | | 3/11/98 | 6:30 | RESET | | 0.5 | | 39.0 | | 16.9 | PERM., (cm/sec.) | | 3/11/98 | 7:20 | 3000 | | 2.7 | | 36.8 | | 16.9 | 4.3E-07 | | 3/11/98 | 8:14 | 3240 | | 4.7 | | 34.8 | | 16.9 | 3.7E-07 | | 3/11/98 | 9:23 | 4140 | | 7.1 | | 32.4 | | 16.9 | 3.6E-07 | | 3/11/98 | 10:58 | 5700 | | 10.4 | | 29.1 | | 16.9 | 3.7E-07 | | 3/11/98 | 13:02 | 7440 | | 14.5 | | 25.0 | | 16.9 | 3.7E-07 | | | | | | | | | | <u></u> | <u></u> | <u> </u> | | | | | | | | | | | | | | | L | δγχ93πμ | ### **CONSOLIDATION** **ASTM D2435** Project Name: **BLAND LANDFILL** Proj. No.: 22045-013.002 Sample No.: CORE #4 @ APPROX. 5" FROM BOT. OF TUBE. Tested By: DGC. Description: SILTY CLAY, LIGHT BROWN WITH ROOTS. Date: 3/5/98 * Sample was flooded with water at the start of test. | Consol. No.: | #321 | |--------------------|--------| | Diameter, in. | 2.42 | | Thickness, in. | 1.00 | | Soil Wet Wt., gms. | 134.55 | | Water Content, % | 33.4 | | Dry Density, pcf. | 83.6 | | Initial Sat. | 88.6 | | Final Sat. | 99.9 | | Tare Number | ABC | |------------------------------|--------| | Wet Wt. of Soil +Tare, gms. | 208.49 | | Dry Wt. of Soil + Tare, gms. | 178.83 | | Weight of Tare, gms. | 77.94 | | Weight of Water, gms. | 29.66 | | Weight of Dry Soil, gms. | 100.89 | | Final Water Content, % | 29.4 | | Est. Specific Gravity | 2.70 | | LOAD
ksf. | DIAL .0001 in. | APPLIED CORRECTIONS | HEIGHT, inches. | CONSOL
% | DENSITY pcf. | VOID
RATIO | |--------------|----------------|---------------------|-----------------|-------------|--------------|---------------| | 0.000 | 0.0000 | 0.0000 | 1.0000 | 0.00 | 83.6 | 1.0163 | | 0.125 | 0.0082 | 0.0000 | 0.9918 | 0.82 | 84.3 | 0.9997 | | 0.250 | 0.0121 | 0.0000 | 0.9879 | 1.21 | 84.6 | 0.9919 | | 0.500 | 0.0157 | 0.0000 | 0.9843 | 1.57 | 84.9 | 0.9846 | | 1.000 | 0.0238 | 0.0000 | 0.9762 | 2.38 | 85.6 | 0.9683 | | 2.000 | 0.0333 | 0.0000 | 0.9667 | 3.33 | 86.4 | 0.9491 | | 4.000 | 0.0530 | 0.0000 | 0.9470 | 5.30 | 88.2 | 0.9094 | | 8.000 | 0.0772 | 0.0000 | 0.9228 | 7.72 | 90.6 | 0.8606 | | 16.000 | 0.1158 | 0.0000 | 0.8842 | 11.58 | 94.5 | 0.7828 | | 32.000 | 0.1576 | 0.0000 | 0.8424 | 15.76 | 99.2 | 0.6985 | | 8.000 | 0.1508 | 0.0000 | 0.8492 | 15.08 | 98.4 | 0.7122 | | 1.000 | 0.1287 | 0.0000 | 0.8713 | 12.87 | 95.9 | 0.7568 | | 0.125 | 0.1101 | 0.0000 | 0.8899 | 11.01 | 93.9 | 0.7943 | | | | | | | | | δγχ93χονσολ ### **CONSOLIDATION** ASTM D2435 **Project Name:** **BLAND LANDFILL** Proj. No.: 22045-013.002 Sample No.: CORE #4 @ APPROX. 5" FROM BOT. OF TUBE. Tested By: DGC. Description: SILTY CLAY, LIGHT BROWN WITH ROOTS. Date: 3/5/98 0.00 δγχ93χονσολ ^{*} Sample was flooded with water at the start of test. ### **CONSOLIDATION - TIME vs. DEFORMATION CURVE** PROJECT NAME: BLAND LANDFILL PROJ. NUMBER: 22045-013,002 LAB. NUMBER: 98-025 SAMPLE NUMBER: CORE #4 DEPTH, ft.: 5" FROM BOT. OF TUBE TESTED BY: DGC SAMPLE DESCRIPTION: SILTY CLAY, LIGHT BROWN WITH ROOTS. DATE: 3/10/98 * Initial dial gauge reading at 0.0 ksf. load is at .0000. δγχ93ρεσ. ### **CONSOLIDATION - TIME vs. DEFORMATION CURVE** PROJECT NAME: **BLAND LANDFILL** PROJ. NUMBER: 22045-013.002 LAB.
NUMBER: 98-025 SAMPLE NUMBER: SAMPLE DESCRIPTION: CORE #4 DEPTH, ft.: 5" FROM BOT. OF TUBE **TESTED BY:** DGC SILTY CLAY, LIGHT BROWN WITH ROOTS. DATE: 3/11/98 * Initial dial gauge reading at 0.0 ksf. load is at .0000. δγχ93ρεω. ### **CONSOLIDATION - TIME vs. DEFORMATION CURVE** PROJECT NAME: **BLAND LANDFILL** PROJ. NUMBER: 22045-013.002 LAB. NUMBER: 98-025 SAMPLE NUMBER: CORE #4 DEPTH, ft.: 5" FROM BOT. OF TUBE **TESTED BY:** DGC SAMPLE DESCRIPTION: SILTY CLAY, LIGHT BROWN WITH ROOTS. DATE: 3/12/98 * Initial dial gauge reading at 0.0 ksf. load is at .0000. | LOAD, ksf.: | 8.00 | | | | | | | |-------------|------------------|--|--|--|--|--|--| | Time, min. | Deformation, in. | | | | | | | | 0.1 | 0.0620 | | | | | | | | 0.2 | 0.0626 | | | | | | | | 0.5 | 0.0638 | | | | | | | | 1 | 0.0648 | | | | | | | | 2 | 0.0657 | | | | | | | | 5 | 0.0670 | | | | | | | | 10 | 0.0684 | | | | | | | | 20 | 0.0700 | | | | | | | | 50 | 0.0719 | | | | | | | | 100 | 0.0733 | | | | | | | | 200 | 0.0743 | | | | | | | | 310 | 0.0750 | | | | | | | | 1340 | 0.0772 | | | | | | | | 1545 | 0.0772 | δγχ93ρεω. # TESTING BY COOPER #### COOPER TESTING LABS, INC. 1951-X Colony Street Mountain View, CA 94043 fax (415) 968-4228 phone (415) 968-9472 FAX TRANSMITTAL COVER SHEET | TO: DINK ON HUWGI | |--| | FROM: DC | | DATE: 3/24 | | NUMBER OF PAGES (INCLUDING THIS COVER) 2 | | NUMBER OF THERE (INCLUDING THIS COVER) | | REMARKS: | | | | 000 | | (from tisk wonagnust) to Sacraments office | | (from tisk monagnust) to Sacraments office | | | | Practis | | | | Orng | | | | • • | If you do not receive all pages, please call (415) 968-9472 # Falling Head Permeability ASTM D 5084 Cooper Testing Lab, Inc. | Job No: | 104-046 | | Boring: | | | Date: | 03/24/9 | |--|---|------------|---|----------|------------|---|----------| | Client: | Emcon | | Sample: | SK-4 | | By: | DC | | Project: | 22045-01 | 3.002 | Depth: | | | | | | Soil: | brown cla | yey GRAVE | L w/sand | | | | <u>.</u> | | Sample Pi | ressures: | | | | | Max. Hyd | raulic | | Ceil: | 7 3 psi | Bot. Cap: | 68 psi | Top Cap: | 68 psi | _Gradient: | 6 | | Elapsed T | ime (min) | • | Head, (in) | _ | Permeab | ility cm/sec | | | 0 | | ··· | 24.0 | | Start of T | est | | | 8 | | | 22.4 | | 6.3 x 10E | -6 | | | 27 | | | 20.1 | | 4.8 x 10E | -6 | | | 130 | | | 10.0 | | 4.9 x 10E | -6 | | | 187 | | | 7.2 | | 4.7 x 10E | -6 | | | 272 | | | 3.6 | | 5.1 x 10E | -6 | | | | | | | | | | | | | | Average P | ermeability | : | 5 x 10E-6 | | cm/sec | | Sample Da | ata: | Average Po | Initial | | 5 × 10E-6 | Final | cm/sec | | Height, in.: | | Average P | Initial
4.00 | • | 5 x 10E-6 | Final
3,92 | cm/sec | | Height, in.:
Diameter, | | Average P | Initia)
4.00
4.00 | | 5 x 10E-6 | Final
3.92
3.95 | cm/sec | | Height, in.:
Diameter,
Area, in2: | in.: | Average P | Initia)
4.00
4.00
12.57 | • | 5 x 10E-6 | Final
3,92
3,95
12,25 | cm/sec | | Height, in.:
Diameter,
Area, in2:
Volume, in | in.:
a: | Average P | Initial
4.00
4.00
12.57
50.27 | | 5 x 10E-6 | Final
3.92
3.95
12.25
48.04 | cm/sec | | Height, in.:
Diameter,
Area, in2:
Volume, in
Total Volur | in.:
9:
ne, cc: | Average P | Initia) 4.00 4.00 12.57 50.27 823.70 | | 5 x 10E-6 | Final
3.92
3.95
12.25
48.04
787.17 | cm/sec | | Height, in.:
Diameter,
Area, in2:
Volume, in
Total Volur
Vol of Solid | :
in.:
3:
ne, cc:
ds, cc: | Average P | Initial
4.00
4.00
12.57
50.27
823.70
566.57 | | 5 x 10E-6 | Final
3.92
3.95
12.25
48.04
787.17
566.57 | cm/sec | | Height, in.: Diameter, Area, in2: Volume, in Total Volun Vol of Solid Vol. of Vold | 3:
ne, cc:
ds, cc:
ds, cc: | Average P | Initial
4.00
4.00
12.57
50.27
823.70
566.57
257.13 | | 5 x 10E-6 | Final
3,92
3,95
12,25
48,04
787,17
566,57
220,61 | cm/sec | | Height, in.: Diameter, Area, in2: Volume, in Total Volum Vol. of Solid Vol. of Vol Vold Ratio | :
in.:
3:
me, cc:
ds, cc:
ds, cc: | Average P | Initial
4.00
4.00
12.57
50.27
823.70
566.57
257.13
0.45 | | 5 x 10E-6 | Final
3.92
3.95
12.25
48.04
787.17
566.57
220.61
0.39 | cm/sec | | Height, in.: Diameter, Area, in2: Volume, in Total Volun Vol of Solid Vol. of Volum Vold Ratio: Porosity, % | in.;
3:
ne, cc:
ds, cc;
ds, cc: | Average P | Initial
4.00
4.00
12.57
50.27
623.70
566.57
257.13
0.45
31.22 | | 5 x 10E-6 | Final
3.92
3.95
12.25
48.04
787.17
566.57
220.61
0.39
28.03 | cm/sec | | Height, in.: Diameter, Area, in2: Volume, in Total Volume Vol. of Solid Vol. of Volume Vol. of Volume Vol. of Saturation | :
in.:
3:
me, cc:
ds, cc:
ds, cc: | Average P | Initial
4.00
4.00
12.57
50.27
823.70
566.57
257.13
0.45
31.22
60.05 | | 5 x 10E-6 | Final
3.92
3.95
12.25
48.04
787.17
566.57
220.61
0.39
28.03
95.24 | cm/sec | | Height, in.: Diameter, Area, in2: Volume, in Total Volume, Vol. of Solid Vol. of Volume Vold Ratio Porosity, % Saturation, Sp. Gravity | in.:
3:
me, cc:
ds, cc:
ds, cc:
;
; | Average P | Initial
4.00
4.00
12.57
50.27
823.70
566.57
257.13
0.45
31.22
60.05
2.65 | assumed | 5 x 10E-6 | Final
3.92
3.95
12.25
48.04
787.17
566.57
220.61
0.39
28.03
95.24
2.65 | cm/sec | | Height, in.: Diameter, Area, in2: Volume, in Total Volume, in Vol of Solid Vol. of Volume Vol of Solid Vold Ratio: Porosity, % Saturation, Sp. Gravity Wet Weigh | in.: 3: me, cc: ds, cc: ds, cc: ; ; ; ; tt, gm: | Average P | Initial
4.00
4.00
12.57
50.27
823.70
566.57
257.13
0.45
31.22
60.05
2.65 | | 5 x 10E-6 | Final
3.92
3.95
12.25
48.04
767.17
566.57
220.61
0.39
28.03
95.24
2.65 | cm/sec | | Height, in.: Diameter, Area, in2: Volume, in Total Volume, Vol. of Solid Vol. of Solid Vold Ratio Porosity, % Saturation, Sp. Gravity Weight Dry Weight | in.: 3: me, cc: ds, cc: ds, cc: ; ; ; ; tt, gm: | Average P | Initial 4.00 4.00 12.57 50.27 823.70 566.57 257.13 0.45 31.22 60.05 2.65 1655.8 1501.4 | | 5 x 10E-6 | Final
3.92
3.95
12.25
48.04
787.17
566.57
220.61
0.39
28.03
95.24
2.65
1711.5 | cm/sec | | Height, in.:
Diameter,
Area, in2:
Volume, in
Total Volur
Vol of Solid | in.: 3: me, cc: ds, cc: ds, cc: ds, cc: t; f: t, gm: | Average P | Initial
4.00
4.00
12.57
50.27
823.70
566.57
257.13
0.45
31.22
60.05
2.65 | | 5 x 10E-6 | Final
3.92
3.95
12.25
48.04
767.17
566.57
220.61
0.39
28.03
95.24
2.65 | cm/sec | Dry Density, pcf: 113.7 Remarks: Remolded to 90% of 127.3 pcf @ 9,8%, (opt +2%) 119.0 # **TESTING BY A & L GREAT LAKES** # A & L GREAT LAKES LABORATORIES, INC. 3505 Conestoga Drive · Fort Wayne, Indiana 46808-4413 · Phone (219)483-4759 · FAX (219)483-5274 ### **REPORT OF ANALYSIS** TO: EMCON P O BOX 340914 SACRAMENTO, CA 95834 DATE RECEIVED: 3/23/98 DATE REPORTED: 3/27/98 PAGE: 1 P.O. NUMBER: 5202100 RE: 22092001009 PROJ# | LAB NO. | SAMPLE ID | ANALYSIS | RESULT | UNIT | METHOD | | |---------|-----------|---|----------------|--------|--|--| | 39518 | SK-3 | Water Holding Capacity @ 1/3 Bar Water Holding Capacity @ 15 Bar | 27.52
11.54 | %
% | MSA Part 1 (1965) pp 273-278
MSA Part 1 (1965) pp 273-278 | | | 39519 | SK-4 | Water Holding Capacity @ 1/3 Bar
Water Holding Capacity @ 15 Bar | 19.52
7.42 | %
% | MSA Part 1 (1965) pp 273-278
MSA Part 1 (1965) pp 273-278 | | # A & L GREAT LAKES LABORATORIES, INC. 3505 Conestoga Drive · Fort Wayne, Indiana 46808-4413 · Phone (219)483-4759 · FAX (219)483-5274 ### **REPORT OF ANALYSIS** **EMCON** TO: P O BOX 340914 SACRAMENTO, CA 95834 DATE RECEIVED: 3/23/98 DATE REPORTED: 3/27/98 PAGE: P.O. NUMBER: 5202100 22092001009 PROJ # | LAB NO. | SAMPLE ID | ANALYSIS | RESULT | UNIT | METHOD | |---------|-----------|----------------------------------|--------|------|------------------------------| | 39518 | SK-3 | Water Holding Capacity @ 1/3 Bar | 27.52 | % | MSA Part 1 (1965) pp 273-278 | | | | Water Holding Capacity @ 15 Bar | 11.54 | % | MSA Part 1 (1965) pp 273-278 | | 39519 | SK-4 | Water Holding Capacity @ 1/3 Bar | 19.52 | % | MSA Part 1 (1965) pp 273-278 | | | | Water Holding Capacity @ 15 Bar | 7.42 | % | MSA Part 1 (1965) pp 273-278 | ### **TESTING BY COLUMBIA ANALYTICAL** ### **ANALYTICAL DATA QC WORKSHEET** | EMICON
DJECT NO
ZIENT/PRO | | | | | PA | GE of | <u> </u> | |---------------------------------|--------------|------------------|-----------------------------|-------------------------|----------------------|--|-----------------------| | ENT/PRO |) 7 | 2045-019 | 3 7772 | | LAB No. | 5980054 | \cap | | | JECT 12 | landell la | a-1811 | | CHEMIST | 1-13c Fe | | | PA METHO | D | metals | 977-97-11-1 | | PROJ. MGR. | Don Hul | lives | | ABORATOR | IY | AS-5 | | | OFFICE | ST | ٥. | | eporting limi | its (check o | ne): MDLs/PQLs |
MRL | s_ <u>/</u> _ | DATE | 4-15-98 | | | | | | | | | | , | | | Assoc. | | Fratura atticus | Anabasa | Extracted/ | Ì | C | | Sample ID | QC or | Date Sampled | Extraction
Holding Time: | Analysis
HoldingTime | Analyzed | Compounds | Surrogate
Recovery | | Sample ID | Field | Date Sampled | | 180 Days | | Detected | Within Limits | | | Sample | | 28 days Hz | 155 Ag. 1 | tz molding filme | | VVICINI CITIES | | A) FIELD SA | MPLES | | Date Extracted | Date Analyze | Yes No | Yes No | Yes No | | 3F-2 | | 3-7-98 | 3/20,23 | 3/23,24 | X | × | MA | | 3F-3 | | | | | | 1 | ì | | 3F-4 | | J/ | | Ŋ | V : | | \mathcal{L} | | ' | | | | | ! | | , | | | | | | | | | ļ | | | | | | | | | | | | | <u></u> | | | | | <u> </u> | | | | | | | - | - | <u> </u> | | | | - | | | | | | | | | | | | | | | | | | | | | | | , | 3) FIELD Q | CSAMPLE | S (Field blanks, | rip blanks, field du | plicates) | | \$1,720 (March 1921) | | | | | | | | : | | . ! | i | | | | | | | | | | | | C) LAB QC | | (Method blanks, | matrix spikes, lab | oratory control | | | | | QC Sample | Assoc. | [_ | | Compounds | Surrogate | MS/DMS | RPD Within | | ID . | Field | Date Extracted | Date Analyzed | Detected | Hecovery | (LCS/DLCS) | Limits | | | Sample | | | Yes No | Within Limits Yes No | Within Limits Yes No | Yes No | | | | 3/20.23 | 3/2024 | X | | ILES INO | MA- | | nB | | 13/10,05 | 3/10/21 | | | WFC | JVV - | | | | | | į | | | | | | | | | | | | | | | | | | , | | ļ. | · | | | | | | | | | | | | | , | | | | | į | | | | | | | | | | | | | | | | ; | | | | | | | | | ; | | | | | | | | | ; | | | | nments; | | | | | : | | | | nments: | | | | | ; | | | ### ANALYTICAL DATA QC WORKSHEET | | | | | | PA | GEof | <u> </u> | |-----------------------|------------------------------------|--|-------------------------------|---------------------------------------|--|--|--| | JECT NO |). <u>2</u> | 2045-017
landfil h | 3.002 | - | LAB No. | 5980054
L15 Per | 0/K98019 | | LIENT/PRO
PA METHO | DECI R | révagil r | and All | | CHEMIST
PROJ. MGR. | Ersc fer | Narden | | ABORATOR | — | inorgeni | <u>ي</u> | | OFFICE | Don Hull | 112 | | | its (check o | ne): MDLs/PQLs | MDI | s_ <u>×</u> _ | DATE | 4-15-98 | ` | | icporting in in | is (oriech c | mej. MDES/FQES | | s /= | DAIL | 4-17-19 | | | Sample ID | Assoc.
QC or
Field
Sample | Date Sampled | Extraction Holding Time: Days | Analysis
HoldingTime:
Days | Extracted/
Analyzed
Within
Holding Time | Compounds
Detected | Surrogate
Recovery
Within Limits | | (A) FIELD SA | | | CN -only | Data Applyzad | | Van I Na | Voc. No. | | | MPLES | | Date Extracted | Date Analyzed | Yes No | Yes No | Yes No | | BF-2 | | 3-7-58 | 3-121298 | 3/13-23 | K . | X | Ma | | BF-3 | | | | | | | <u> </u> | | BF-4 | | <u>Ψ</u> | <u> </u> | <u> </u> | Ψ | | V | | | | | | ļ | ļ | de librario de la secono | | | | | | | B) HELD Q(| SAMPLE | S (Field blanks, t | rip blanks, field du | plicates) | | | | | · | | | | | | | | OVI AP OC | CALADIES | 77 | | | 30 d 200 (200 (200 (200 (200 (200 (200 (2 | 2 40 39 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | Assoc. | (Meniod Dianks, | matrix spikes, labo | | Surrogate | MS/DMS | <u> </u> | | QC Sample
ID | Field
Sample | Date Extracted | Date Analyzed | Compounds
Detected | Recovery Within Limits | (LCS/DLCS) Within Limits | RPD Within
Limits | | | | | N. 18. | Yes No | Yes No | Yes No | Yes No | | mB | | 3-12 | 3/13-18 | × | NA- | MA | M | | | | | | | | | : | | | | | | | | | : | | | | | | | | | | | | | | | | | | | | | | | | | |)
: | <u> </u> | | | | | | | | , | | | | | | | , , , , , , , , , , , , , , , , , , , | ; | | | | ments: | | | - | | | | | | _ | March 25, 1998 Service Request No.: <u>\$9800540</u> Rich Haughey EMCON 1921 Ringwood Avenue San Jose, CA 95131 RE: Blandfill/22045-013.002 Dear Mr. Haughey: The following pages contain analytical results for sample(s) received by the laboratory on March 11, 1998. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. listed above. To help expedite our service, please refer to this number when contacting the laboratory. Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 12, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3. Please feel welcome to contact me should you have questions or further needs. Sincerely, Steven L. Green Project Chemist Acronyms A2LA **American Association for Laboratory Accreditation** ASTM American Society for Testing and Materials **Biochemical Oxygen Demand** aa Benzene, Toluene, Ethylbenzene, Xylenes TEX CAM California Assessment Metals California Air Resources Board CARB **CAS Number** Chemical Abstract Service registry Number CFC Chlorofluorocarbon CFU Colony-Forming Unit Chemical Oxygen Demand COD Department of Environmental Conservation DEC DEO Department of Environmental Quality DHS Department of Health Services DI CS **Duplicate Laboratory Control Sample** DMS **Duplicate Matrix Spike** DOE Department of Ecology DOH Department of Health U. S. Environmental Protection Agency **EPA** ELAP **Environmental Laboratory Accreditation Program** GC. Gas Chrometography GC/M8 Gas Chromatography/Mass Spectrometry IC ion Chromatography **ICB** Initial Calibration Blank sample **ICP** Inductively Coupled Plasma atomic emission spectrometry Initial Calibration Verification sample Estimated concentration. The value is less than the MRL, but greater than or equal to the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding. LCS Laboratory Control Sample Leaking Underground Fuel Tank LUFT Modified MRAS Methylene Blue Active Substances CL Maximum Contaminant Level. The highest permissible concentration of a substance allowed in drinking water as established by the U. S. EPA. Method Detection Limit MDL MPN Most Probable Number Method Reporting Limit MRI MS Matrix Spike MTRE Methyl tert-Butyl Ether Not Applicable NA Not Analyzed NAN **Not Calculated** NC National Council of the paper industry for Air and Stream Improvement **NCASI** Not Detected at or above the method reporting/detection limit (MRL/MDL) ND NIOSH National Institute for Occupational Safety and Health NTU Nephelometric Turbidity Units Parts Per Billion ppb ppm Parts Per Million Practical Quantitation Limit PQL Quality Assurance/Quality Control QA/QC **RCRA** Resource Conservation and Recovery Act RPD Relative Percent Difference SIM Selected Ion Monitoring SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992 Solubility Threshold Limit Concentration STLC Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, SW 3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB. TCLP Toxicity Characteristic Leaching Procedure TDS **Total Dissolved Solids TPH** Total Petroleum Hydrocarbons > Trace level. The concentration of an analyte that is less than the PQL but greater than or equal to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding. TRPH Total Recoverable Petroleum Hydrocarbons **Total Suspended Solids TSS** **Total Threshold Limit Concentration** TTLC ACRONLST.DOC 7/14/95 Volatile Organic Analyte(s) VOA #### Analytical Report lent: **EMCON** Service Request: S9800540 Project: Blandfill Landfill/22045-013.002 Date Collected: 3/7/98 Date Received: 3/11/98 Sample Matrix: Soil **Total Metals** Sample Name: BF-2 Units: mg/Kg (ppm) Lab Code: S9800540-001 Basis: Wet Test Notes: | | Prep | Analysis | | Dilution | Date | Date | | Result | |-----------|------------|----------|-----|----------|----------|----------|--------|--------| | Analyte | Method | Method | MRĹ | Factor | Prepared | Analyzed | Result | Notes | | Aluminum | EPA 3050BM | 6010A | 5 | 1 | 3/20/98 | 3/23/98 | 8800 | | | Arsenic | EPA 3050BM | 6010A | 5 | 1 | 3/20/98 | 3/23/98 | ND | | | Barium | EPA 3050BM | 6010A | 1 | 1 | 3/20/98 | 3/23/98 | 100 | | | Cadmium | EPA 3050BM | 6010A | 0.5 | 1 | 3/20/98 | 3/23/98 | 0.7 | | | Calcium | EPA 3050BM | 6010A | 20 | 1 | 3/20/98 | 3/23/98 | 47000 | | | Chromium | EPA 3050BM | 6010A | 1 | 1 | 3/20/98 | 3/23/98 | 14 | | | Copper | EPA 3050BM | 6010A | 1 | 1 | 3/20/98 | 3/23/98 | 35 | | | iron | EPA 3050BM | 6010A | 5 | 1 | 3/20/98 | 3/23/98 | 11000 | | | Load | EPA 3050BM | 6010A | 5 | 1 | 3/20/98 | 3/23/98 | 21 | | | Magnesium | EPA 3050BM | 6010A | 20 | 1 | 3/20/98 | 3/23/98 | 11000 | | | Manganese | EPA 3050BM | 6010A | 1 | 1 | 3/20/98 | 3/23/98 | 270 | | | Nickel | EPA 3050BM | 6010A | 2 | 1 | 3/20/98 | 3/23/98 | 9 | | | Potassium | EPA 3050BM | 6010A | 50 | 1 | 3/20/98 | 3/23/98 | 3300 | | | Selenium | EPA 3050BM | 6010A | 5 | 1 | 3/20/98 | 3/23/98 | ND | | | _ Silver | EPA 3050BM | 6010A | . 2 | 1 | 3/20/98 | 3/23/98 | ND | |
| odium | EPA 3050BM | 6010A | 50 | ì | 3/20/98 | 3/23/98 | 320 | | | inc | EPA 3050BM | 6010A | 2 | 1 | 3/20/98 | 3/23/98 | 70 | | | Mercury | EPA 3050BM | 7470 | 0.4 | ì | 3/23/98 | 3/24/98 | ND | | #### **Analytical Report** Client: **EMCON** Service Request: S9800540 Project: Blandfill Landfill/22045-013.002 Date Collected: 3/7/98 Sample Matrix: Soil Date Received: 3/11/98 **Total Metals** Sample Name: BF-3 Units: mg/Kg (ppm) Lab Code: S9800540-002 Basis: Wet Test Notes: | | Prep | Analysis | | Dilution | Date | Date | _ | Result | |-----------|--------------|----------|-----|----------|----------|----------|--------|--------| | Analyte | Method | Method | MRL | Factor | Prepared | Analyzed | Result | Notes | | Aluminum | EPA 3050BM | 6010A | 5 | 1 | 3/20/98 | 3/23/98 | 9400 | | | Arsenic | EPA 3050BM | 6010A | 5 | 1 | 3/20/98 | 3/23/98 | ND | | | Barium | EPA 3050BM | 6010A | 1 | 1 | 3/20/98 | 3/23/98 | 110 | | | Cadmium | EPA 3050BM | 6010A | 0.5 | 1 | 3/20/98 | 3/23/98 | 0.5 | | | Calcium | EPA 3050BM | 6010A | 20 | 1 | 3/20/98 | 3/23/98 | 47000 | | | Chromium | EPA 3050BM | 6010A | 1 | 1 | 3/20/98 | 3/23/98 | 14 | | | Copper . | EPA 3050BM | 6010A | 1 | 1 | 3/20/98 | 3/23/98 | 15 | | | Iron | EPA 3050BM | 6010A | 5 | 1 | 3/20/98 | 3/23/98 | 13000 | | | Load | EPA 3050BM | 6010A | 5 | 1 | 3/20/98 | 3/23/98 | 14 | | | Magnesium | EPA 3050BM · | 6010A | 20 | 1 | 3/20/98 | 3/23/98 | 10000 | | | Manganese | EPA 3050BM | 6010A | 1 | 1 | 3/20/98 | 3/23/98 | 290 | | | Nickel | EPA 3050BM | 6010A | 2 | 1 | 3/20/98 | 3/23/98 | 12 | | | Potassium | EPA 3050BM | 6010A | 50 | 1 | 3/20/98 | 3/23/98 | 3700 | | | Selenium | EPA 3050BM | 6010A | 5 | 1 | 3/20/98 | 3/23/98 | ND | | | Silver | EPA 3050BM | 6010A | 2 | 1 | 3/20/98 | 3/23/98 | ND | | | odium | EPA 3050BM | 6010A | 50 | 1 | 3/20/98 | 3/23/98 | 940 | | | Zino | EPA 3050BM | 6010A | 2 | 1 | 3/20/98 | 3/23/98 | 53 | | | Morcury | EPA 3050BM | 7470 | 0.4 | 1 | 3/23/98 | 3/24/98 | ND | | #### **Analytical Report** lent: **EMCON** Service Request: \$9800540 Project: Blandfill Landfill/22045-013.002 Date Collected: 3/7/98 Date Received: 3/11/98 Sample Matrix: Soil Total Metals Sample Name: BF-4 Units: mg/Kg (ppm) Lab Code: S9800540-003 Basis: Wet | | Prep | Analysis | | Dilution | Date | Date | | Result | |-----------|------------|----------|-----|----------|----------|----------|--------|--------| | Analyte | Method | Method | MRL | Factor | Prepared | Analyzed | Result | Notes | | Aluminum | EPA 3050BM | 6010A | 5 | 1 | 3/20/98 | 3/23/98 | 8900 | | | Arsenic | EPA 3050BM | 6010A | 5 | 1 | 3/20/98 | 3/23/98 | ND | | | Barium | EPA 3050BM | 6010A | 1 | 1 | 3/20/98 | 3/23/98 | 230 | | | Cadmium | EPA 3050BM | 6010A | 0.5 | 1 | 3/20/98 | 3/23/98 | ND | | | Calcium | EPA 3050BM | 6010A | 20 | 1 | 3/20/98 | 3/23/98 | 67000 | | | Chromium | EPA 3050BM | 6010A | 1 | 1 | 3/20/98 | 3/23/98 | 11 | | | Copper | EPA 3050BM | 6010A | 1 | 1 | 3/20/98 | 3/23/98 | 15 | | | lron. | EPA 3050BM | 6010A | 5 | 1 | 3/20/98 | 3/23/98 | 10000 | | | Load | EPA 3050BM | 6010A | 5 | 1 | 3/20/98 | 3/23/98 | 13 | | | Magnesium | EPA 3050BM | 6010A | 20 | 1 | 3/20/98 | 3/23/98 | 15000 | | | Manganese | EPA 3050BM | 6010A | 1 | 1 | 3/20/98 | 3/23/98 | 350 | | | Nickel | EPA 3050BM | 6010A | 2 | 1 | 3/20/98 | 3/23/98 | 11 | | | Potassium | EPA 3050BM | 6010A | 50 | i | 3/20/98 | 3/23/98 | 4000 | | | Scienium | EPA 3050BM | 6010A | 5 | ī | 3/20/98 | 3/23/98 | ND | | | Silver | EPA 3050BM | 6010A | 2 | ī | 3/20/98 | 3/23/98 | ND | | | odium | EPA 3050BM | 6010A | 50 | ī | 3/20/98 | 3/23/98 | 470 | | | anc | EPA 3050BM | 6010A | 2 | ī | 3/20/98 | 3/23/98 | 57 | | | Mercury | EPA 3050BM | 7470 | 0.4 | i | 3/23/98 | 3/24/98 | ND | | #### Analytical Report Lilent: EMCON Project: Sample Matrix: Blendfill Landfill/22045-013.002 Soil Service Request: \$9800540 Date Collected: NA Date Received: NA **Total Metals** Sample Name: Lab Code: Method Blank S980320-MB Units: mg/Kg (ppm) Basis: Wet Test Notes: | | Prep | Analysis | | Dilution | Date | Date | | Result | |-----------|------------|----------|-----|----------|----------|----------|--------|--------| | Analyte | Method | Method | MRL | Factor | Prepared | Analyzed | Result | Notes | | Aluminum | EPA 3050BM | 6010A | 5 | 1 | 3/20/98 | 3/20/98 | ND | | | Arsenic | EPA 3050BM | 6010A | 5 | 1 | 3/20/98 | 3/20/98 | ND | | | Barium | EPA 3050BM | 6010A | 1 | 1 | 3/20/98 | 3/20/98 | ND | | | Cadmium | EPA 3050BM | 6010A | 0.5 | 1 | 3/20/98 | 3/20/98 | ND | | | Calcium | EPA 3050BM | 6010A | 20 | 1 | 3/20/98 | 3/20/98 | ND | | | Chromium | EPA 3050BM | 6010A | ł | 1 | 3/20/98 | 3/20/98 | ND | | | Copper . | EPA 3050BM | 6010A | Ī. | 1 | 3/20/98 | 3/20/98 | ND | | | Iron | EPA 3050BM | 6010A | 5 | 1 | 3/20/98 | 3/20/98 | ND | | | Lead | EPA 3050BM | 6010A | 5 | 1 | 3/20/98 | 3/20/98 | ND | | | Magnesium | EPA 3050BM | 6010A | 20 | i | 3/20/98 | 3/20/98 | ND | | | Manganese | EPA 3050BM | 6010A | ī | ī | 3/20/98 | 3/20/98 | ND | | | Nickel | EPA 3050BM | 6010A | 2 | i | 3/20/98 | 3/20/98 | ND | | | Potassium | EPA 3050BM | 6010A | 50 | 1 | 3/20/98 | 3/20/98 | ND | | | Selenium | EPA 3050BM | 6010A | 5 | ī | 3/20/98 | 3/20/98 | ND | | | Silver | EPA 3050BM | 6010A | 2 | ī | 3/20/98 | 3/20/98 | ND | | | odium | EPA 3050BM | 6010A | 50 | ī | 3/20/98 | 3/20/98 | ND | | | Linc | EPA 3050BM | 6010A | 2 | ī | 3/20/98 | 3/20/98 | ND | | | Mercury | EPA 3050BM | 7470 | 0.4 | ī | 3/23/98 | 3/24/98 | ND | | ### **Analytical Report** Client: **EMCON** Blandfill Landfill/22045-013.002 Sample Matrix: Soil Project: Service Request: K9801545 Date Collected: 3/7/98 Date Received: 3/11/98 Date Extracted: 3/17/98 Date Analyzed: 3/18/98 **Cation Exchange Capacity** EPA Method 9081 > Units: mEq/100g As Received Basis | Sample Name | Lab Code | MRL | Result | | |--------------|--------------|-----|--------|--| | BF-2 | K9801545-001 | 0.1 | 18.8 | | | BF-3 | K9801545-002 | 0.1 | 18.7 | | | BF-4 | K9801545-003 | 0.1 | 18.0 | | | Method Blank | K9801545-MB | 0.1 | ND | | #### **Analytical Report** Client: EMCON Service Request: S9800540 Project: Blandfill Landfill/22045-013.002 Date Collected: 3/7/98 Sample Matrix: Soil Date Received: 3/11/98 **Inorganic Parameters** Sample Name: BF-2 Lab Code: Test Notes: S9800540-001 Basis: Wet | | Analysis | | | | Date | Date | | Result | |---------------|-------------------------|----------------|-----|--------|---------------|--------------------|------------|--------| | Analyte | Units | Method | MRL | Factor | Digested | Analyzed | Result | Notes | | Cyanide
pH | mg/Kg (ppm)
pH UNITS | 335.3
150.1 | 1_ | 1
1 | 3/12/98
NA | 3/13/98
3/23/98 | ND
4.79 | | #### **Analytical Report** Client: **EMCON** Service Request: S9800540 Project: Blandfill Landfill/22045-013.002 Date Collected: 3/7/98 Sample Matrix: Soil Date Received: 3/11/98 **Inorganic Parameters** Sample Name: BF-3 Lab Code: S9800540-002 Basis: Wet Test Notes: | Analyte | Units | Analysis
Method | MRL | Dilution
Factor | Date
Digested | Date
Analyzed | Result | Result
Notes | |---------------|-------------------------|--------------------|-----|--------------------|------------------|--------------------|------------|-----------------| | Cyanide
pH | mg/Kg (ppm)
pH UNITS | 335.3
150.1 | 1_ | 1
1 | 3/12/98
NA | 3/13/98
3/23/98 | ND
5.48 | | #### **Analytical Report** Client: **EMCON** Service Request: S9800540 Project: Blandfill Landfill/22045-013.002 Date Collected: 3/7/98 Sample Matrix: Soil Date Received: 3/11/98 **Inorganic Parameters** Sample Name: BF-4 Lab Code: S9800540-003 Basis: Wet Test Notes: | | | Analysis | | Dilution | Date | Date | | Result | |---------------|-------------------------|----------------|-----|----------|---------------|--------------------|------------|--------| | Analyte | Units | Method | MRL | Factor | Digested | Analyzed | Result | Notes | | Cyanide
pH | mg/Kg (ppm)
pH UNITS | 335.3
150.1 | 1 | 1
1 | 3/12/98
NA | 3/13/98
3/23/98 | ND
6.38 | | #### **Analytical Report** Client: **EMCON** Service Request: S9800540 Project: Blandfill Landfill/22045-013.002 Date Collected: NA Sample Matrix: Soil Date Received: NA **Inorganic Parameters** Sample Name: Method Blank Lab Code: S9800540-MB Basis: Wet Test Notes: Dilution Date Date Analysis Result Analyte Units Method Factor Notes MRL Digested Analyzed Result Cyanide 335.3 1 3/12/98 3/13/98 mg/Kg (ppm) ND APPENDIX A EMCON - San Jose Chain o Ustody / Laboratory analysis request fo 59800540 | 1921 Ringwood Av | /enue, San Jos/ | c, CA 95131 | (408) 453-730 | JO FAX (408) | 437-9 | 526 | | ノ 、 | 0 | | | | Date | 2//6 | 110 | | rage | 01 | |---|-----------------|-------------|---|--|---------------|---|--------------------------|--------------|--|--|--|---------------|--|--------------|------------------------|--|--------------|---------------------------------------| | Project Name: | Т | Τ | | | | | | . A ı | nalysis R | equested | | | | | | | | | | Project Numbe | er: 22045-0 | /13.002 | | | l | <u> </u> | | | | | | | | | | T | | · · · · · · · · · · · · · · · · · · · | | Project Manager: Rich Haughey | | | | | | | pacity | | ļ | | | | | | | | | | | Company/Address: EMCON San Jose, CA | | | | | | e Ca | se Ca | | | | | ! | | · | | | | | | | San J | ose, CA | | | of Containers | | hang | | | | | | | |
| | | | | Phone: | | | | | | | Cation Exchange Capacity | tals | Cyanide | | | | | | | | | | | Sampler's Sigi | nature: | | | | Number | ЬH | Cat | Metals | Cya | <u></u> | | | | | | | | REMARKS | | Sample | | | LAB | Sample | | | | | | | | | | | | | | 1 | | I.D. | Date | Time | I.D. | Matrix
Soil | _ | | x | X | x | <u> </u> | ļ | | | | ļ | | <u> </u> | Preservations | | BF-2 | 3/7 | | 1 | | 1 | | | | | | <u> </u> | | | | | | | | | BF-3 | 3/7 | | 又 | Soil | 1 | X | | X | Х | | | | | | | | | | | BF-4 | 3/7 | | 3 | Soil | Ti | X | Х | X | Х | | | | | | | | | | | | | | | Soil | | X | х | Х | х | | | | | | | | | | | | | | | | | | | L | | | | | | | - | <u> </u> | | | | <u></u> | | | | | _ | <u> </u> | | ot | | <u> </u> | <u> </u> | <u> </u> | | | | | - | | | | | | | | 丰 | <u> </u> | | <u> </u> | | <u> </u> | <u> </u> | <u> </u> | | | <u> </u> | | | ļ | | <u> </u> | | J | | | igapha | ┼ | | ┼ | | | | ┼ | | | | <u> </u> | | | | Relinqui | shed By | _ | Received | I By | ╄ | TURN | AROU | ND RE | OUIR | EMENTS | REPO | RT REQUIRE | EMENTS | INVO | ICE INFORM | MATION | SAM | IPLE RECEIPT | | Signature Signature | | Signatur | | ==== | = | TURNAROUND RÉQUIREMENTS 24 hr 48 hr 5 day | | | X I. Ro | X I. Routine Report II. Report (includes DUP, MS | | P O. # | | | Shipping VIA: | | | | | Printed Name | En fle. | | Printed Name | | Ě | X Standard (~10-15 working days) Provide Verbal Preliminary Results | | | 1 | MSD, as required, may be charged as samples) | | Bill to EMCON | | | Shipping #: Condition: | | | | | Firm Firm | | | 上 | Provide FAX Preliminary Results | | | | h | III. Data Validation Report
(includes All Raw Data) | | | | | | | | | | | 3/11/18 3/11/98 /320
Date/Time Date/Time | | | Requ | Requested Report Date 3 24 98 | | | | RWQ | RWQCB (MDLs/PQLs/TRACE#) | | | | | Lab No | | | | | | Relinquished By Received By | | | Special Instructions/Comments: Metals to be tested for are as follows; Aluminum, Calcium, Copper, Cyanide, Iron, Manganese | | | | | | | | | | | | | | | | | Signature Signature | | | 1 | Magnesium, Nickel, Potassium, Sodium, Arsenic, Barium, Cadmium, Chromium, Lead, Mercury, Selenium, Silver, and Zinc. | | | | | | | | | | | | | | | | Printed Name Printed Name | | | 1 | 20 | | | | | | 110 11 | . <i>L</i> . | VI QR | ie . 1. 1 | lan | | | | | | Firm Firm | | | | 1 ' | مدلا ا | y ' | 'onl | Poll | mpled | into | cioz pa | cy tvy | PLFW. | Waju | 78 | ¥ | 216 | | ### SETTLEMENT CALCULATIONS **COMPUTATION SHEET** | Blanchill | PROJECT NO.22045-013.00 | |--|-------------------------| | CRIPTION: Subgrack Settlement Estimate | SHEET OF | | REP. BY: 10. 44/1/195 DATE: 4-15-98 CHKD BY: | DATE: | Estimate settlement of underlying swarade using S= Cott log (PIAP) Assimptions: · upper clayer clayer is 10 feet thick (based on Earth Line vally Lavellill) but also consider 20 feet thick - · Cc = 0.128 (based on actual test for Blanchill motore well with emprical equations and similar SIVL sto. 1) - · Co = 1.02 (trem los data) - · Preconsolidation Pressure is 7 Kst journ date. Find consider Pe = 4.5 Kst from SLVL date. - · AP is bused on maximum till height of 200 leet and a mast unit wount of 110 pet - · Heglect settlement due te recompression Calculations: $$S = \frac{(0.128)(10 \text{ ft})}{(1+1.02)} / co \left[\frac{(200 \text{ ft})(115 \text{ pcf})}{9,000 \text{ psf}} \right] = 0.23 \text{ ft}$$ $$= 2.7''$$ | Thickness
(75) | (Kst) | Settlemen
(inches) | |-------------------|-------|-----------------------| | 10 | 9.0 | 2,7 | | 10 | 4.5 | 4.7 | | 20 | 9.0 | 5.5 | | 20 | 4,5 | 9.5 | -EMCON - Bland 7:11 Sittliment Analysis Christopher Sather Privious values & from Salt Lake Valley Landfill (Volume II November, 1991) To for wormally consol clay. 5 = C. H log (Por AP) initial void ratio => P = 4.1ksF 5--- 11 (55-2) Por 1.2 KSE 11 - 32 OCR = 3.4 6:0.162 C. = . 198 (compirisal) -> P = 4.7 KSE 5 mph (ST-4) P. - 1.6 KSF LL = 35-OLR - 2.9 C. = 0.250 C. = 0.25 = (empirical) 3 P = 2.7ksF Sample (ST-5) P. = 1.8 KGF 11-38 OLR = 1.5 C. = 0.350 Ce = . 252 (Empirical) 6 = 0.009(11-10) New data (= 0.007(LL-7) -> rimolded clays (Rindon - Horriso, 1980) | Sample # | 16 | G. (empirical) | | | | | |---------------|----|----------------|--|--|--|--| | Br. A. + SA Z | 29 | 0.154 | | | | | | 64 2 | 18 | 0.147 | | | | | | 543 | 3/ | 0.118 | | | | | | 514 | 28 | 6.147 | | | | | No LL data for 1011 samples > preformed on 1011 # 4. consolidation to it was H. . W. / (# 0°) 6. 8. 2.24026 16 (#X) 2.40) 2.70 (62.4 16) = 0.4163 in. #### Final Void Ratio Versus Pressure Page 1 ### **CONSOLIDATION TEST** ### (Void ratio-pressure and coefficient of consolidation calculation) | Description | n of soil <u>84</u> | and fill - | 5:14 114 | Light 6. | owefor I was | Accation Vol. 4 | | | | | |---|---------------------|--|---|---------------------------------------|------------------------------|--|-----------------|---------------------|---|-----------------| | Specimen o | diameter | 2.42 | in. | | | Initial specimen hei | ght, $H_{t(i)}$ | 1.0 in | <i>)</i> | | | Moisture c | ontent: Be | ginning of te | est <u>33.4</u> | | (%) | End of test | % | | | | | Weight of dry soil specimen 100.89 G_s $2.$ | | | | | | Height of solids, H_s | 74 | cm = <u>0.4/63/</u> | | | | Pressure, p (ton/ft²) | Final
dial | Change in
specimen
height
(in.) | Final specimen height, $H_{t(f)}$ (in.) | Height of void, H _v (in.) | Final
void
ratio,
e | Average height during consolidation, $H_{t(av)}$ (in.) | Fittin
(se | g time
ec) | c_v from $ imes 10^3$ (in. 2 /sec) | | | | reading
(in.) | | | | | | t ₉₀ | t ₅₀ | t ₉₀ | t ₅₀ | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | | 0 | 0. 000 | | 1.000 | 4.8698 | 0.5837 | | | | | | | | | 0.0333 | | | | 0. 1834 | 240 | 1740 | ٥. 854 | 6.027 | | | 0333 | | 0.9667 | 0.8365 | 0.5504 | | | | | | | | | 0.0197 | | | | 0.9569 | 303.6 | | 0. 639 | | | 4 | 00530 | | 0.9470 | 0.8168 | 0.5207 | | | | | | | | | 0.0242 | | | | 0. 9349 | 317.4 | 306 | s. 583 | 0.150 | | 8 | ۵. ۵772 | | چ دد ۶ . ن | 0.7926 | 0.506 5 | | | | 1 | | | | | 0.0386 | | | | 0.9635 | 345.6 | | 0.501 | | | 16 | 0.1158 | | o.8843 | 0 754 | 0.4679 | | | | | | | | | | | | | | | | | | | [| 1 | | | | | | | | | 1 | #### Blandfill **Description of Soil** Silty Clay, Light Brown with Roots Pressure on Specimen 2.00 KSF | Time after load application, | Square root of time | Vertical Dial | |------------------------------|---------------------|---------------| | t(min.) | (min.) | Reading (in.) | | 0.1 | 0.3 | 0.0267 | | 0.2 | 0.4 | 0.0270 | | 0.5 | 0.7 | 0.0274 | | 1 | 1.0 | 0.0277 | | 2 | 1.4 | 0.0280 | | 5 | 2.2 | 0.0286 | | 10 | 3.2 | 0.0291 | | 20 | 4.5 | 0.0296 | | 50 | 7.1 | 0.0304 | | 100 | 10.0 | 0.0310 | | 200 | 14.1 | 0.0316 | | 500 | 22.4 | 0.0325 | | 1363 | 36.9 | 0.0333 | | 1583 | 39.8 | 0.0333 | T₉₀ by square root of time method 50 fro = 4,0 min Square root of time method (min 0.5) #### Blandfill Description of Soil Pressure on Specimen Silty Clay, Light Brown with Roots 4.00 KSF | Time after load application, | Square root of time | Vertical Dial | |------------------------------|---------------------|---------------| | t(min.) | (min.) | Reading (in.) | | 0.1 | 0.3 | 0.0396 | | 0.2 | 0.4 | 0.0403 | | 0.5 | 0.7 | 0.0412 | | 1 | 1.0 | 0.0419 | | 2 | 1.4 | 0.0428 | | 5 | 2.2 | 0.0441 | | 10 | 3.2 | 0.0452 | | 20 | 4.5 | 0.0463 | | 50 | 7.1 | 0.0477 | | 100 | 10.0 | - 0.0488 | | 200 | 14.1 | 0.0501 | | 500 | 22.4 | 0.0514 | | 1354 | 36.8 | 0.0530 | | 1486 | 38.5 | 0.0530 | T_{90} Method by square root of time method #### Blandfill Description of Soil Silty Clay, Light Brown with Roots Pressure on Specimen <u>8.00 KSF</u> | Time after load application, | Square root of time | Vertical Dial | |------------------------------|---------------------|---------------| | t(min.) | (min.) | Reading (in.) | | 0.1 | 0.3 | 0.0620 | | 0.2 | 0.4 | 0.6260 | | 0.5 | 0.7 | 0.0638 | | 1 | 1.0 | 0.0648 | | 2 | 1.4 | 0.0657 | | 5 | 2.2 | 0.0670 | | 10 | 3.2 | 0.0684 | | 20 | 4.5 | 0.0700 | | 50 | 7.1 | 0.0719 | | 100 | 10.0 | 0.0733 | | 200 | 14.1 | 0.0743 | | 310 | 17.6 | 0.0750 | | 1340 | 36.6 | 0.0772 | | 1545 | 39.3 | 0.0772 | Page 3 0745 #### Blandfill Description of Soil Pressure on Specimen Silty Clay, Light Brown with Roots on Specimen <u>16.00 KSF</u> | Time of a load amplication | Square root of time | Vertical Dial | |------------------------------|---------------------|---------------| | Time after load application, | 1 - I | | | t(min.) | (min.) | Reading (in.) | | 0.1 | 0.3 | 0.0898 | | 0.2 | 0.4 | 0.0910 | | 0.5 | 0.7 | 0.0930 | | 1 | 1.0 | 0.0946 | | 2 | 1.4 | 0.0967 | | 5 | 2.2 | 0.1003 | | 10 | 3.2 | 0.1030 | | 20 | 4.5 | 0.1053 | | 50 | 7.1 | 0.1082 | | 100 | 10.0 | 0.1103 | | 200 | 14.1 | 0.1125 | | 310 | 17.6 | 0.1139 | | 1408 | 37.5 | 0.1157 | | 1661 | 40.8 | 0.1158 | #### T_{90} by square root of time method #### Consolidation Test Blandfill **Description of Soil** Silty Clay, Light Brown with Roots Pressure on Specimen 2.00 KSF | | ************************************** | | |----------------------|--|---------------| | Time after load | Square root of time | Vertical Dial | | application, t(min.) | (min.) | Reading (in.) | | 0.1 | 0.3 | 0.0267 | | 0.2 | 0.4 | 0.0270 | | 0.5 | 0.7 | 0.0274 | | 1 | 1.0 | 0.0277 | | 2 | 1.4 | 0.0280 | | 5 | 2.2 | 0.0286 | | 10 | 3.2 | 0.0291 | | 20 | 4.5 | 0.0296 | | 50 | 7.1 | 0.0304 | | 100 | 10.0 | 0.0310 | | 200 | 14.1 | 0.0316 | | 500 | 22.4 | 0.0325 | | 1363 |
36.9 | 0.0333 | | 1583 | 39.8 | 0.0333 | Time (min) - log scale #### Consolidation Test Blandfill Description of Soil Pressure on Specimen Silty Clay, Light Brown with Roots 4.00 KSF | Time after load | Square root of time | Vertical Dial | |----------------------|---------------------|---------------| | application, t(min.) | (min.) | Reading (in.) | | 0.1 | 0.3 | 0.0396 | | 0.2 | 0.4 | 0.0403 | | 0.5 | 0.7 | 0.0412 | | 1 | 1.0 | 0.0419 | | 2 | 1.4 | 0.0428 | | 5 | 2.2 | 0.0441 | | 10 | 3.2 | 0.0452 | | 20 | 4.5 | 0.0463 | | 50 | 7.1 | 0.0477 | | 100 | 10.0 | 0.0488 | | 200 | 14.1 | 0.0501 | | 500 | 22.4 | 0.0514 | | 1354 | 36.8 | 0.0530 | | 1486 | 38.5 | 0.0530 | Blandfill Description of Soil Pressure on Specimen Silty Clay, Light Brown with Roots 8.00 KSF | Time after load | Square root of time | Vertical Dial | |----------------------|---------------------|---------------| | application, t(min.) | (min.) | Reading (in.) | | 0.1 | 0.3 | 0.0620 | | 0.2 | 0.4 | 0.6260 | | 0.5 | 0.7 | 0.0638 | | 1 | 1.0 | 0.0648 | | 2 | 1.4 | 0.0657 | | 5 | 2.2 | 0.0670 | | 10 | 3.2 | 0.0684 | | 20 | 4.5 | 0.0700 | | 50 | 7.1 | 0.0719 | | 100 | 10.0 | 0.0733 | | 200 | 14.1 | 0.0743 | | 310 | 17.6 | 0.0750 | | 1340 | 36.6 | 0.0772 | | 1545 | 39.3 | 0.0772 | Page 7 #### Blandfill Description of Soil Pressure on Specimen Silty Clay, Light Brown with Roots 16.00 KSF | Time after load | Square root of time | Vertical Dial | |----------------------|---------------------|---------------| | application, t(min.) | (min.) | Reading (in.) | | 0.1 | 0.3 | 0.0898 | | 0.2 | 0.4 | 0.0910 | | 0.5 | 0.7 | 0.0930 | | 1 | 1.0 | 0.0946 | | 2 | 1.4 | 0.0967 | | 5 | 2.2 | 0.1003 | | 10 | 3.2 | 0.1030 | | 20 | 4.5 | 0.1053 | | 50 | 7.1 | 0.1082 | | 100 | 10.0 | 0.1103 | | 200 | 14.1 | 0.1125 | | 310 | 17.6 | 0.1139 | | 1408 | 37.5 | 0.1157 | | 1661 | 40.8 | 0.1158 | Time (min) - log scale # Appendix C Drainage Analysis # APPENDIX C DRAINAGE ANALYSIS ### **CONTENTS** | 1 | INTRODUCTION | 1-1 | |-----|---|-----| | 2 | HYDROLOGY ANALYSIS | 2-1 | | 3 | HYDRAULIC ANALYSIS | 3-1 | | 4 | CONCLUSIONS | 4-1 | | | | | | TAE | BLES | | | FIG | URES | | | APP | PENDIX C-1 HYDROLOGY CALCULATIONS | | | • | • PRECIPITATION DATA | | | • | HYDROLOGIC SOIL TYPE MAP | | | • | • TR-55 DATA INPUT | | | • | DRAINAGE SUBAREA CALCULATIONS | | | • | • SUBAREA PEAK FLOWS (A through G) | | | • | • COMBINED FLOW TO NORTHWEST DETENTION POND | | | • | • COMBINED FLOW TO SOUTHWEST DETENTION POND | | | • | • COMBINED FLOW TO SOUTHEAST DETENTION POND | | ### **CONTENTS** (Continued) #### HYDRAULIC CALCULATIONS - DETENTION POND VOLUME - NORTHWEST DETENTION POND - SOUTHWEST DETENTION POND - SOUTHEAST DETENTION POND - TOP DECK DIVERSION BERM - LF BENCH DRAINAGE DITCH - ACCESS ROAD DRAINAGE DITCH - PERIMETER BENCH DRAINAGE DITCH - PIPE DOWNDRAIN AND CROSSDRAIN #### LIST OF TABLES AND FIGURES #### **Tables** - C-1 Summary of Drainage Facilities - C-2 Summary of Detention Ponds #### **Figures** - C-1 Vicinity Map - C-2 Drainage Map #### 1 INTRODUCTION This drainage analysis was prepared in conjunction with the revised grading plan for the Mountain View Landfill (formerly Blandfill Landfill) in Salt Lake County, Utah. The objective of this analysis is to provide a basis for the surface drainage system of the revised landfill configuration that would meet the requirements for the phased development and closure period of the site. The design criteria and methodology established in the previous Drainage Report prepared by EMCON in November 1997 were also adopted in this drainage analysis. #### **Existing Site Condition** The Mountain View Landfill site is an existing construction and demolition (Class VI) landfill, see Figure C-1, Vicinity Map. Natural topography of the site and surrounding areas gently slopes towards the northwest. Existing fill at the central portion of the site builds out at elevation 4,350 feet above mean sea level (msl). Surrounding ground is relatively flat ranging from 4,220 feet msl and 4217 feet msl at the north/northwest and southwest of the site, respectively. The area immediately east of the site is occupied by the Salt Lake Valley Landfill. North of the site is a wedge-shaped open area bound by the northern fill limit and an earth mound (abandoned railroad) traversing diagonally beginning at the northwest corner of the property. This open area creates additional contributory flow along the northern perimeter of the site. Drainage tributary to the south is minimal due to an existing ditch alongside 1300 South Street. West of the site is 7200 West Street and Lee Creek where most of the site surface runoff will drain. The landfill development will occupy approximately 76 acres of land with a new entrance facility located in the southeast corner of the site. The entrance facility is comprised of an all-weather access road and an entrance area that includes a scalehouse, truck scale, an office trailer with employee parking, and a maintenance shop. #### **Proposed Development** The landfill development will occupy approximately 74 acres of land with a new entrance facility located in the southeast corner of the site. The entrance facility will have a paved entrance area that includes a scalehouse, two truck scales, an office trailer with employee parking, and a maintenance shop with truck wash pad. The final landfill slopes will be constructed no steeper than 2:1 (horizontal to vertical) slope ratio, with 25-foot wide benches at 50-foot vertical increments. A minimum final surface slope of 5 percent at the landfill deck area will be used to provide sufficient slope for runoff after landfill settlement. Diversion berms on top deck of the landfill and drainage ditches on landfill benches will be provided to convey runoff to overside drains and drainage ditches along the perimeter of the landfill. Collected runoff will then be routed through detention ponds before being released off-site. Run-on storm flow from an off-site area north of the landfill and a small portion of the northeast corner of the landfill will be diverted away from the site and conveyed through a drainage pipe across 7200 West Street. Several detention ponds are proposed at the perimeter of the landfill. These ponds will be used for sediment control and runoff detention. Pond outlet structures will drain collected storm water in the ponds to existing drainage facilities along the south and west perimeter of the site. Locations of drainage facilities are shown on the landfill development drawings and drainage map. #### 2 HYDROLOGY ANALYSIS The method used for the hydrologic analysis of the proposed landfill development is based on the Technical Release 55 (TR-55), *Urban Hydrology for Small Watershed* published by the Natural Resources Conservation Service (NRCS). Runoff peak flows and storm hydrographs obtained from the hydrologic analysis are based on the 25-year, 24-hour frequency storm event and presented in Appendix C-1. #### **Precipitation** Rainfall data from the nearest precipitation station (National Weather Service-Salt Lake City Station [SLCS]) was used to simulate the storm event at the site. The estimated 25-year, 24-hour precipitation reported from the SLCS is 2.65 inches. #### **Rainfall Distribution** TR-55 includes four synthetic 24-hour rainfall distributions developed by the NRCS representing various regions of the United States. Based on the geographical location of the site, Type II rainfall distribution and antecedent moisture condition (AMC) II was used in the analysis. #### **Time of Concentration** The time of concentration (T_c) is the time for runoff to travel from the most hydraulically distant point in a drainage subarea to reach the collection point. Calculation for T_c consists of overland flow or sheet flow, shallow concentrated flow, and open channel flow, or some combination, to the collection point. The T_c calculated for the landfill drainage subarea ranges from 6 to 8 minutes, approximately 0.1 hour, the minimum time concentration allowed for the TR-55 computer program. Overland flow times were calculations based on the kinematic equation for sheet flow condition Travel times for shallow concentrated and open channel flows were calculated based on flow velocities obtained from Manning's equation. Data input for the TR-55 computer analysis are presented in the hydrology calculations. An approximate T_c for the off-site drainage area was developed based on the topographic features shown on the US Geological Survey (USGS) map and open channel flow time along the northern perimeter of the site. #### Hydrologic Soil Group Selection of runoff CNs area based on the hydrologic soil classification, cover type, hydrologic conditions, and antecedent moisture condition. The soils at the site are predominantly silty clay loam classified as Type C under the NRCS soil group system. Based on available soil information and land use, the CN values used for the analysis are | Area Description | CN | ······································ | |-----------------------|----|--| | Landfill Top Deck | 86 | | | Landfill Side Slope | 88 | | | Perimeter/Access Road | 90 | | | Undeveloped Area | 79 | | | | | | #### **Drainage Areas** Tributary areas to drainage ditches/downdrains and detention ponds are divided into subareas as shown on Figure C-2, Drainage Map. Drainage subareas to drainage facilities are as follows: | Subarea Designation | Drainage Facilities | Detention Pond | |---------------------|--|--------------------------| | A & B | North Perimeter Ditch, LF
Drainage Benches,
Crossdrains and Downdrains | | | С | West Perimeter Ditch, LF
Drainage Benches,
Crossdrains and Downdrains | | | A, B, & C | | Northwest Detention Pond | | D&E | South Perimeter Ditch, LF
Drainage Benches,
Crossdrains and
Downdrains | Southwest Detention Pond | | F | East Perimeter Ditch LF
Drainage Benches,
Crossdrains and Downdrains | Southeast Detention Pond | | G | North Diversion Ditch | | | K | North Diversion Ditch | | #### 3 HYDRAULIC ANALYSIS Estimated peak flows obtained from the hydrologic evaluation of drainage subareas were used for designing the proposed storm water drainage system for the landfill development. Drainage control facilities for the landfill consist of diversion berm with drainage ditch on the top deck area, a V-ditch on landfill benches, a trapezoidal ditch on the access road and perimeter bench, pipe downdrains on side slope areas, and pipe crossdrains on landfill benches. Drainage ditches along the perimeter of the landfill were analyzed with erosion control mat lining or equivalent protective material for protection against soil erosion. Drainage conveyance structures were sized or checked for capacity using Manning's equation for open channel. Proposed detention ponds at the landfill perimeter were analyzed to determine required storage capacity during the design storm event. The combined flows from tributary areas to detention ponds as shown on the drainage map waer analyzed based on the TR-55 computer program. Results of the hydrologic evaluation for inflow to detention ponds are presented in Appendix C-1. Hydraulic analyses of drainage structures and detention ponds are included in Appendix C-2. The summary of landfill drainage structures and detention ponds is presented in Tables C-1 and 2, respectively. #### 4 CONCLUSIONS The drainage facilities proposed for the new landfill development are designed to handle the 25-year, 24-hour frequency storm event. Periodic maintenance and best management practices should be implemented throughout the development phase of the landfill to maintain hydraulic capacities of proposed drainage facilities. Drainage ditches with flow velocities of 5 fps or less should be lined with grass. Drainage ditches with greater than 5 fps flow velocities should be lined with erosion control mat or equivalent protective material for protection against erosion. Drainage ditches along access road with steep grades should be lined with concrete. Pipe downdrains on the landfill side slopes are designed to convey flow to perimeter drainage facilities and should be provided with energy dissipator or transition section at pipe outlet for protection against erosion. Crossdrains on landfill benches and access road may be metal or concrete pipe with minimum pipe cover for vehicular traffic. Sediments are expected to be generated during the active phase of landfill development. During the wet season, erosion and sediment control devices such as sediment traps and silt fences should be used to minimize sediment transport to downstream drainage facilities and detention ponds. Sediment production is expected to decline when portions of the landfill are closed and vegetated. Proposed detention ponds were analyzed for the design storm event and have sufficient capacity to pass the storm runoff volume through the pond. Due to limited pond capacity, all detention ponds should be desilted after storm events to provide maximum storage for the next storm and prevent an overtopping condition. Outlet pipes for the ponds should be inspected and any obstructions should be removed to make certain that outlet structure will properly function. #### **TABLES** Rev. 0, 1/12/06 Table C-1 # Mountain View Landfill Salt Lake County, Utah ### **Summary of Drainage Facilities** | Drainage Area | Design Q (cfs) | Drainage Structure | Туре | |---------------|----------------|---|-----------------| | A1 | 1 | LF Bench Ditch | DD-A | | | 1 | LF Access Road | DD-C | | | 2 | Crossdrain/Downdrain | 12" CMP-T | | A2 | 5 | North Perimeter Ditch | DD-D | | A3 | 3 | LF Access Road | DD-C | | | 3 | LF Bench Ditch | DD-A | | | 6 | Crossdrain/Downdrain | 12" CMP-T | | ВІ | 4
4 | LF Bench Ditch
Crossdrain/Downdrain | DD-A
12" CMP | | B2 | 6 | LF Bench Ditch | DD-A | | | 3 | LF Access Road | DD-C | | | 13 | Crossdrain/Downdrain | 18" CMP | | В3 | 3 | LF Bench Ditch | DD-A | | | 16 | Crossdrain/Downdrain | 24" CMP-T | | B4 | 15 | North Perimeter Ditch | DD-D | | C5b | 34 | North Perimeter Ditch | DD-E | | | 34 | Crossdrain/Inlet to Northwest
Detention Pond | 30" CMP-RR | | C1 | 3 | Top Deck LF Bench | DD-B | | | 3 | LF Access Road | DD-C | | | 6 | Crossdrain/Downdrain | 18" CMP | | | | | | ## **Table E-1 (continued)** # Mountain View Landfill Salt Lake County, Utah ## Summary of Drainage Facilities | Drainage Area | Design Q (cfs) | Drainage Structure | Туре | |---------------|----------------|---|-------------| | C2 | 2 | LF Bench Ditch | DD-A | | | 8 | Crossdrain/Downdrain | 18" CMP | | C3 | 4 | North LF Bench Ditch | DD-A | | | 4 | West LF Bench Ditch | DD-A | | | 16 | Crossdrain/Downdrain | 24" CMP | | C4 | . 6 | North LF Bench Ditch | DD-A | | | 6 | West LF Bench Ditch | DD-A | | | 28 | Crossdrain/Downdrain | 24" CMP | | C5a | 6 | West Perimeter Ditch | DD-D | | | 34 | Crossdrain/Inlet to Northwest
Detention Pond | 30" CMP-RR | | C6 | 3 | Northwest Detention Pond | | | D1 | 6 | Top Deck Diversion Berm | DD-B | | | 6 | Crossdrain/Downdrain | 18" CMP | | D2 | 3 | LF Bench Ditch | DD-A | | | 9 | Crossdrain/Downdrain | 18" CMP | | D3 | 3 | LF Bench Ditch | DD-A | | | 12 | Crossdrain/Downdrain | 18" CMP | | D4 | 2 | LF Bench Ditch | DD-A | | | 14 | Crossdrain/Downdrain | 18" CMP-T | | D5 | 17 | South Perimeter Ditch | DD-E | | El | 7 | Top Deck Diversion Berm & LF Bench Ditch | DD-B & DD-A | ## **Table E-1 (continued)** # Mountain View Landfill Salt Lake County, Utah #### **Summary of Drainage Facilities** | Drainage Area | Design Q (cfs) | Drainage Structure | Туре | |---------------|----------------|---|------------| | | 7 | Crossdrain/Downdrain | 18" CMP | | E2 | 6 | LF Bench Ditch | DD-A | | | 13 | Crossdrain/Downdrain | 18" CMP | | E3 | 7 | LF Bench Ditch | DD-A | | | 20 | Crossdrain/Downdrain | 24" CMP | | E4 | 6 | LF Bench Ditch | DD-A | | | 26 | Crossdrain/Inlet to Southwest
Detention Pond | 24" CMP | | E5 | 24 | South Perimeter Ditch | DD-E | | | 24 | Crossdrain/Inlet to Southwest Detention Basin | 24" CMP-RR | | E6 | 3 | Southwest Detention Pond | | | FI | 5 | East LF Bench Ditch | DD-A | | | 1 | South LF Bench Ditch | DD-A | | | 6 | Crossdrain/Downdrain | 18" CMP | | F2 | 4 | East LF Bench Ditch | DD-A | | | 3 | South LF Bench Ditch | DD-A | | | 13 | Crossdrain/Downdrain | 18" CMP | | F3 | 5 | East LF Bench Ditch | DD-A | | | 3 | South LF Bench Ditch | DD-A | | | 21 | Downdrain/Inlet to Southeast Detention Pond | 24" CMP-RR | | F4 | 8 | East Perimeter Ditch | DD-D | | | 4 | South Perimeter Ditch | DD-D | #### Table E-1 (continued) # Mountain View Landfill Salt Lake County, Utah #### **Summary of Drainage Facilities** | Drainage Area | Design Q (cfs) | Drainage Structure | Туре | | | |-----------------|----------------|--|------|--|--| | | 12 | Ditch/Inlet to Southeast
Detention Pond | DD-D | | | | G1 | 4 | North Diversion Ditch | | | | | K1 ² | 18 | North Diversion Ditch | | | | #### Notes: - 1. Locations of drainage facilities are shown on Drawing 1 Landfill Final Grading and Drainage Plan. - 2. From 1997 Drainage Report. #### Abbreviations: DD-A = Drainage Ditch-Type A, "V"-shaped, grass-lined, d=1.0', z=2:1 DD-B = Drainage Ditch-Type B, Trapezoidal shape, grass-lined, d=1.0', b=1', z=2:1 & 5:1 DD-C = Drainage Ditch-Type C, Trapezoidal shape, concrete-lined, d=1.0', b=1', z=2:1 DD-D = Drainage Ditch-Type D, Trapezoidal shape, grass-lined, d=1.5', b=1', z=2:1 DD-E = Drainage Ditch-Type E, Trapezoidal shape, ECM/grass-lined, d=1.5', b=2', z=2:1 CMP = Corrugated Metal Pipe CMP-T = Corrugated Metal Pipe with tee outlet CMP-RR = Corrugated Metal Pipe with rock riprap outlet cfs = cubic feet per second Table C-2 # Mountain View Landfill Salt Lake County, Utah #### **Summary of Detention Ponds** | | Northwest Detention
Pond | Southwest Detention
Pond | Southeast Detention
Pond | |----------------------------|-----------------------------|-----------------------------|-----------------------------| | Peak Inflow (cfs) | 77.0 | 48.0 | 33.0 | | Pond Volume (ac-ft) | 1.7 | 1.5 | 0.6 | | Dead Storage (ac-ft) | 0 | 0 | 0 | | Peak Storm Storage (ac-ft) | 1.1 | 0.9 | 0.4 | | Peak Outflow (cfs) | 40 | 25 | 20 | | Outlet Structure | 2 - 24" RCP | 1 - 24" RCP | 1 - 24" RCP | #### Notes: 1. Locations of detention ponds are shown on Drawing 1 - Landfill Final Grading and Drainage Plan. #### Abbreviations: ac-ft = acre feet cfs = cubic feet per second RCP = Reinforced Concrete Pipe #### **FIGURES** : <No Xrefs> ue, 08/Feb/00 IMAGE Files: <No Images> Files: XREF icale: 0.5 Psitscale: 1 XRE! N:\cad\DWG\BLANDFIL\TB-VICMAP. SANJOSE/CADD: # APPENDIX C-1 HYDROLOGY CALCULATIONS ## PRECIPITATION DATA a 0 Z 04 n H #### ESTIMATED RETURN PERIODS FOR SHORT DURATION PRECIPITATION (inches) Station: Saint George 37° 07° Elevation: Latitude: Longitude: 2760 113° 34' #### DURATION | | 5
Min | 10
Min | 15
Min | 30
Min | 1°
Hr | 2
Hr | 3
Hr | 6
Hr | 12
Hr | 24
Hr | |-----|----------|-----------|-----------|-----------|----------|---------|---------|---------|----------|----------| | 1 | .17 | .26 | .32 | .45 | .57 | .58 | .60 | .63 | .66 | .69 | | 2 | .23 | .35 | .44 | .62 | .78 | .80 | .83 | .88 | .93 | .98 | | 5 | .31 | .48 | .61 | .85 | 1.07 | 1.12 | 1.17 | 1.29 | 1.40 | 1.51 | | 10 | .37 | .58 | .74 | 1.02 | 1.29 | 1.35 | 1.40 | 1.54 | 1.66 | 1.79 | | 25 | .46 | .72 | .91 | 1.26 | 1.60 | 1.67 | 1.73 | 1.89 | 2.03 | 2.18 | | 50 | .55 | .85 | 1.07 | 1.49 | 1.88 | 1.95 | 2.02 | 2.18 | 2.33 | 2.48 | | 100 | .61 | .95 | 1.20 | 1.67 | 2.11 | 2.19 | 2.26 | 2.45 | 2.62 | 2.79 | Station: Latitude: Salt Lake City
40° 46' Elevation: Longitude: 4300 1110 531 DURATION | ************************************** | 5
Min | 10
Min | 15
Min | 30
Min | _ | 2
Hr | | 6
Hr | | | |--|----------|-----------|-----------|-----------|-----|---------|------|---------|-----------|------| | 1 | .14 | .21 | .27 | .37 | .47 | .54 | .61 | .78 | .93 | 1.09 | | 2 | .15 | .23 | .30 | .41 | .52 | .62 | .72 | .96 | 1.18 | 1.40 | | 5 | .17 | .27 | . 34 | .47 | .59 | .74 | .88 | 1.23 | 1.54 | 1.87 | | 10 | .18 | .27 | .35 | .48 | .61 | .79 | .97 | 1.40 | 1.79 | 2.19 | | 25 | .20 | .31 | .39 | .55 | .69 | .92 | 1.13 | 1.67 | 2.15 | 2.65 | | 50 | .22 | .34 | .43 | .60 | .76 | 1.02 | 1.26 | 1.88 | 2.43 | 3.00 | | 100 | .23 | .36 | .46 | .64 | .81 | 1.10 | 1.38 | 2.08 | 2.70 | 3.35 | | | | | | | | | | | - | · | a 0 Z \supset H ш # HYDROLOGIC SOIL TYPE MAP ## SOIL SURVEY OF # Salt Lake Area, Utah United States Department of Agriculture Soil Conservation Service In cooperation with Utah Agricultural Experiment Station Issued April 1974 TR-55 DATA INPUT #### Drainage Analysis TR-55 Data Input | | | T | | | | | T | | | | | 1 | | |-------------|-------------------------------|--|----------|--------------|--------------|-------------------|--------|--------------|--------------|--|--------------|--------------|--------------| | Subarea | | } | | Weighted | Elev | Elev |] |) | | · · | | 1 | | | Designation | Description | Type of Cover | Area | CN | Start | End | Δ Elev | Distance | S | То | V | Tt | Tc | | | | 2772222 | ac | 1 | ft | ft | ft | ft | ft/ft | hr | fps | hr | hr | | Al | LF Sideslope, Bench, Acc Rd | Fair grass, gravel | 1.0 | 88 | 4310 | 4277 | 33.0 | 75 | 0.440 | 0.041 | | | | | | | | | | 4277 | 4275 | 2.0 | 140 | 0.014 | | 2.4 | 0.016 | 0.057 | | | | | | | | | | | | | | | | | A2 | LF Sideslope, Perimeter Bench | Fair grass, gravel | 1.1 | 88 | 4274 | 4249 | 25.0 | 50 | 0.500 | 0.028 | | | | | | | | | | 4249 | 4244 | 5.0 | 320 | 0.016 | | 4.5 | 0.020 | 0.048 | | | | | | ļ <u> </u> | | | | | | <u> </u> | | ļ | | | A3 | LF Sideslope, Bench | Fair grass, gravel | 2.4 | 88 | 4350 | 4306 | 44.0 | 85 | 0.518 | 0.043 | | 0.000 | 0.026 | | | | | | ļ | 4306 | 4294 | 12.0 | 390 | 0.031 | | 3.4 | 0.032 | 0.075 | | | | | <u></u> | | | | ļ | | | | | | | | Bl | LF Top Deck | Enin areas | 10 | 86 | 4425 | 4393 | 32.0 | 90 | 0.356 | 0.052 | | | | | | LI TOP DECK | Fair grass | 1.8 | | 4393 | 4383 | 10.0 | 500 | 0.020 | 0.032 | 3.9 | 0.036 | 0.088 | | | | | | | 4373 | 4363 | 10.0 | 300 | 0.020 | | | 1-0:050 | 5.55 | | B2 | LF Sideslope, Bench, Acc Rd | Fair grass, gravel | 4.6 | 88 | 4391 | 4344 | 47.0 | 100 | 0.470 | 0.050 | - | | | | | | I Br Br | | 1 | 4344 | 4329 | 15.0 | 830 | 0.018 | | 4.2 | 0.055 | 0.105 | | | | \ | | 1 | | | | | , | | | | | | B3 | LF Sideslope, Bench | Fair grass, gravel | 1.2 | 88 | 4310 | 4287 | 23.0 | 50 | 0.460 | 0.029 | | | | | | · · | | | | 4287 | 4280 | 7.0 | 320 | 0.022 | | 3.8 | 0.023 | 0.053 | | L | | | | | | | | | | | | | | | B4 | LF Sideslope, Perimeter Bench | Fair grass, gravel | 1.8 | 88 | 4290 | 4245 | 45.0 | 100 | 0.450 | 0.051 | | l | | | | | | | | 4245 | 4235 | 10.0 | 640 | 0.016 | | 5.9 | 0.030 | 0.082 | |
 | | | | | | | | | | | | | <u> </u> | | C5b | LF Sideslope, Perimeter Bench | Fair grass, gravel | 2.6 | 88 | 4280 | 4235 | 45.0 | 90 | 0.500 | 0.045 | | | | | ļ | | <u> </u> | | <u> </u> | 4235 | 4225 | 10.0 | 1050 | 0.010 | <u> </u> | 6.1 | 0.048 | 0.093 | | | | ļ <u>-</u> | | ļ | | | ļ | | | | ļ | | ļ | | C1 | LF Top Deck, Bench, Acc Rd | Pain mana manal | 2.0 | 86 | 4410 | 4377 | 33.0 | 95 | 0.347 | 0.055 | | | | | | Li Top Beck, Bench, Ace Ru | Fair grass, gravel | 2.8 | 80 | 4410
4377 | 4370 | 7.0 | 350 | 0.020 | 0.055 | 3.6 | 0.027 | 0.082 | | | | | | | 4377 | 43/0 | 7.0 | 330 | 0.020 | | 3.0 | 0.027 | 0.082 | | C2 | LF Sideslope, Bench, Acc Rd | Fair grass, gravel | 1.0 | 88 | 4381 | 4360 | 21.0 | 45 | 0.467 | 0.027 | | + | | | | | r mir Brass, Braver | 1.0 | | 4360 | 4355 | 5.0 | 270 | 0.019 | 0.027 | 3.2 | 0.023 | 0.050 | | | <u> </u> | | | | 4500 | -222 | 1 3.0 | 2.0 | 0.017 | | 7.2 | 4.025 | 0.000 | | C3 | LF Sideslope, Bench | Fair grass, gravel | 3.3 | 88 | 4364 | 4320 | 44.0 | 100 | 0.440 | 0.052 | | + | | | | | , <u></u> | | | 4320 | 4310 | 10.0 | 580 | 0.017 | 1 | 3.7 | 0.044 | 0.095 | | | | | | 1 | | 1 | | 1 | | 1 | 1 | 1 | | | C4 | LF Sideslope, Bench | Fair grass, gravel | 5.1 | 88 | 4322 | 4275 | 47.0 | 100 | 0.470 | 0.050 | | | | | | | | <u> </u> | | 4275 | 4260 | 15.0 | 800 | 0.019 | | 4.3 | 0.052 | 0.102 | | | | | | | |] | | | | | | | | #### Drainage Analysis TR-55 Data Input | Subarea | | | | Weighted | Elev | Elev | | | _ | _ | | | | |-------------|-------------------------------|--|------|--|--------------|--------------|--|------------|----------------|--------------|--------------|--------------|--------------| | Designation | Description | Type of Cover | Area | CN | Start | End | Δ Elev | Distance | S | То | V | Tt | Tc
hr | | | | | ac | | ft | ft | ft | ft | ft/ft | hr | fps | hr | nr | | C5a | LF Sideslope, Perimeter Bench | Fair grass, gravel | 2.5 | 88 | 4275 | 4239 | 36.0 | 80 | 0.450 | 0.043 | - 60 | 0.028 | 0.081 | | | | ļ | | | 4239 | 4225 | 14.0 | 920 | 0.015 | | 6.8 | 0.038 | 0.081 | | C6 | LF Sideslope, Perimeter Bench | Fair grass, gravel | 1.1 | 90 | 4226 | 4219 | 7.0 | 20 | 0.350 | 0.016 | | | | | | Northwest Detention Pond | | | · | 4219 | 4217 | 2.0 | 200 | 0.010 | | 3.0 | 0.019 | 0.034 | | | | ļ | | | | <u> </u> | | | | | | | | | D1 | LF Top Deck | Fair grass | 3.8 | 86 | 4425 | 4388 | 37.0 | 260 | 0.142 | 0.175 | | | | | | | | | | 4388 | 4382 | 6.0 | 300 | 0.020 | | 3.9 | 0.021 | 0.196 | | - Do | I DOLL D | | | | 1000 | 10.55 | 26.0 | | | 0.042 | ļ | | <u> </u> | | D2 | LF Sideslope, Bench | Fair grass, gravel | 1.2 | 88 | 4390
4355 | 4355
4342 | 35.0
13.0 | 80
490 | 0.438
0.027 | 0.043 | 4.1 | 0.033 | 0.077 | | | | | | | 4333 | 4342 | 13.0 | 490 | 0.027 | <u> </u> | 4.1 | 0.033 | 0.077 | | D3 | LF Sideslope, Bench | Fair grass, gravel | 1.2 | 88 | 4355 | 4315 | 40.0 | 85 | 0.471 | 0.044 | | | | | | | | | | 4315 | 4302 | 13.0 | 490 | 0.027 | | 4.1 | 0.033 | 0.078 | | D4 | I E Cidealan D | ln · | 10 | - 00 | 4212 | 4076 | 27.0 | 75 | 0.402 | 0.020 | ļ | | | | | LF Sideslope, Bench | Fair grass, gravel | 1.0 | 88 | 4312
4275 | 4275
4266 | 37.0
9.0 | 450 | 0.493
0.020 | 0.039 | 3.3 | 0.038 | 0.077 | | | | | | | 72/3 | 7200 | 7.0 | 130 | 0.020 | | 1 | 0.050 | 0.017 | | D5 | LF Sideslope, Perimeter Bench | Fair grass, gravel | 1.3 | 88 | 4275 | 4226 | 49.0 | 105 | 0.467 | 0.053 | | | | | | | | | | 4226 | 4224 | 2.0 | 450 | 0.004 | | 3.7 | 0.034 | 0.086 | | | <u> </u> | | ļ | | | | | | <u> </u> | | | | | | El | LF Top Deck | Fair grass | 4.3 | 86 | 4405 | 4375 | 30.0 | 170 | 0.176 | 0.114 | | | | | | | | | | 4375 | 4364 | 11.0 | 640 | 0.017 | | 4.3 | 0.041 | 0.156 | | | I P C A . A . D | | | | | | | 100 | | 2.242 | | | | | E2 | LF Sideslope, Bench | Fair grass, gravel | 2.7 | 88 | 4375
4336 | 4336
4322 | 39.0
14.0 | 120
740 | 0.325
0.019 | 0.068 | 4.3 | 0.048 | 0.116 | | | | | | | 4330 | 4322 | 14.0 | 140 | 0.019 | | 4.3 | 0.048 | 0.110 | | E3 | LF Sideslope, Bench | Fair grass, gravel | 2.8 | 88 | 4336 | 4297 | 39.0 | 120 | 0.325 | 0.068 | | | 1 | | | | | | | 4297 | 4280 | 17.0 | 830 | 0.020 | | 4.5 | 0.051 | 0.119 | | E4 | I F Cideologo Daniel | To in a second | | | 4000 | 4262 | 20.0 | 110 | 0.006 | 0.000 | | ļ | | | <u>E4</u> | LF Sideslope, Bench | Fair grass, gravel | 2.7 | 88 | 4297
4260 | 4260
4243 | 37.0
17.0 | 110
870 | 0.336
0.020 | 0.062 | 4.3 | 0.056 | 0.118 | | | | | - | | 7200 | 7273 | 17.0 | 870 | 0.020 | | 7.5 | 0.050 | 0.116 | | E5 | LF Sideslope, Perimeter Bench | Fair grass, gravel | 3.0 | 88 | 4255 | 4222 | 33.0 | 80 | 0.413 | 0.044 | | | | | | | | | | 4222 | 4220 | 2.0 | 550 | 0.004 | | 4.0 | 0.038 | 0.083 | #### Drainage Analysis TR-55 Data Input | Subarea | | | | Walahtad | Elev | Elev | | | , | | | | | |----------------|---|---|------------------|------------------|--------------|----------------|--------------------------|-----------------------------------|----------------|---------------|--|---------|--------------| | Designation | Description | Type of Cover | Агеа | Weighted
CN | Start | End | Δ Elev | Distance | s | To | l v l | Tt | Tc | | Designation | Description | Type of Cover | ac | CIV | ft | ft | ft | ft | ft/ft | hr | fps | hr | hr | | E6- | LF Sideslope, Perimeter Bench | Fair grass, gravel | 1.4 | 90 | 4240 | 4220 | 20.0 | 40 | 0.500 | 0.024 | | | 0.024 | | | Southwest Detention Pond | , , , , | <u></u> | <u> </u> | | | | | | | | | | | | ļ | ļ | | | | F1 | LF Sideslope, Bench | Fair grass, gravel | 3.4 | 88 | 4398 | 4350 | 48.0 | 240 | 0.200 | 0.143 | | 0.001 | 0.164 | | | | | | <u> </u> | 4350 | 4345
 5.0 | 290 | 0.017 | | 3.9 | 0.021 | 0.164 | | F2 | LF Sideslope, Bench | Fair grass, gravel | 2.8 | 88 | 4350 | 4310 | 40.0 | 80 | 0.500 | 0.041 | | | | | | Sidesiope, Belleti | ran grass, graver | 2.0 | - 88 | 4310 | 4303 | 7.0 | 440 | 0.016 | 0.041 | 3.6 | 0.034 | 0.075 | | | | † · · · · · · · · · · · · · · · · · · · | | | 4510 | 1505 | 1 | 1 | 0.010 | | | | | | F3 | LF Sideslope, Bench | Fair grass, gravel | 3.5 | 88 | 4310 | 4270 | 40.0 | 80 | 0.500 | 0.041 | | | | | | | | | | 4270 | 4261 | 9.0 | 590 | 0.015 | | 3.5 | 0.047 | 0.088 | | | | | | | | | | | | | | | <u> </u> | | F4 | LF Sideslope, Perimeter Bench | Fair grass, gravel | 4.9 | 88 | 4282 | 4240 | 42.0 | 90 | 0.467 | 0.047 | | | | | | Southeast Detention Pond | | | | 4240 | 4230 | 10.0 | 950 | 0.011 | } | 3.5 | 0.075 | 0.122 | | G1 | Incid to Bi | | | | | 1000 | | | 2.500 | 0.000 | ļ | | 0.000 | | | LF Sideslope, Diversion Ditch | Fair grass | 1.6 | 88 | 4250 | 4220 | 30.0 | 60 | 0.500 | 0.033 | | | 0.033 | | Notes: | | | | | | | | | | | | | | | | E-2 - Drainage Map, for subarea delineation | on and drainage nath location | ne | | | | Abbreviations CN = Curve | | | ac = acres | | | | | 2. Subarea tim | e of concentration includes overland and | shallow concentrated/ditch f | low times. | | | | V = flow ve | locity | | | eet per second | | | | 3. Subareas wi | th less than 0.1 hr time of concentration v | vere rounded to the nearest (|). 1 hr for comp | uter data input. | | | | of ditch or pipe | | ft = feet | I | | I | | | | | | | ļ | | | f ditch or pipe
nd travel time | | ft/sec = feet | per second | ļ | | | | | | | | | - | | | concentrated/o | | nt of concentrati | oti | + | | | | | | T | | | | f concentration | [| 1 | 1 | I | 1 | #### DRAINAGE SUBAREA CALCULATIONS | | EMCON/OWT, INC | |-------|----------------| | Shaw- | EMCON/OWT, INC | # **QUANTITY CALCULATIONS** | Shaw EMCON/OW1, INC | | | | | | | | | | | |---------------------|----------|---------------|----------------|---------------------------------------|-------------|-------------|---------------------------------------|--|--|--| | PROJECT TIT | | | iew Lanfill, U | T | | PROJECT NO. | | | | | | CALCULATIO | ONS FOR | Drainage Area | ıs | | | TASK NO. | 1000000 | | | | | SCALE | | 1" = 100' | | TOPO DATE | | PAGE | OF | | | | | | PLA | VIMETER REA | ADING | | MID-CONTOUR | CONTOUR | | | | | | AREA OR | • | (Acres) | AVEDACE | AREA | AVERAGE | INTERVAL | VOLUME | | | | | CONTOUR | 1 | 2 | AVERAGE | (Acres) | (Sq. ft.) | (Ft.) | (Cu.yd.) | | | | | | | <u> </u> | | <u></u> | l l | } | | | | | | Al | 1.018 | 1.028 | 1.0 | ١. | | | · · · · · · · · · · · · · · · · · · · | | | | | A2 | 1.135 | 1.132 | 1.1 | | | | · · · · · · · · · · · · · · · · · · · | | | | | A3 | 2.448 | 2.437 | 2.4 | | | | | | | | | | | T | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | 1 |] | | | | | | Bl | 1.811 | 1.811 | 1.8 | | | | | | | | | B2 | 4.640 | 4.647 | 4.6 | | | | | | | | | | 5 | | | | | | | | | | | B3 | 1.192 | 1.181 | 1.2 | | 1 | | | | | | | B4 | 1.786 | 1.776 | 1.8 | | | | | | | | | | | 1 | l | i | | | | | | | | | | } | | | | | | | | | | Cl | 2.825 | 2.832 | 2.8 | | | | | | | | | C2 | 0.957 | 0.957 | 1.0 | <u> </u> | | | | | | | | C3 | 3.309 | 3.295 | 3.3 | | | | | | | | | C4 | 5.110 | 5.092 | 5.1 | - | | | | | | | | C5 | 5.128 | 5.135 | 5.1 | | | | | | | | | | | | | | | · | | | | | | C6 | 1.089 | 1.089 | 1.1 | | | | · | | | | | | | | | | | | | | | | | DI | 3.750 | 3.758 | 3.8 | | | | | | | | | | | | | <u> </u> | | | | | | | | D2 | 1.253 | 1.242 | 1.2 | | | | | | | | | D3 | 1.213 | 1.213 | 1.2 | | | | | | | | | D4 | 1.032 | 1.032 | 1.0 | | | | | | | | | D5 | 1.345 | 1.338 | 1.3 | ı | | | · | | | | | | | | | | | i. | · | | | | | | | | | | | | | | | | | · | | | | <u> </u> | | | | | | | | TOTAL | | | | | TOTAL | | | | | | | BY: | ESA | DATE | 8/4/03 | REMARKS | | | | | | | | CHKD: | | DATE | | REMARKS | | | | | | | | | EMCON/OWT, | | |-------|------------|----| | Shaw- | EMCON/OWT, | 11 | # **QUANTITY CALCULATIONS** | PROJECT TIT
CALCULATIO
SCALE | IONS FOR | Drainage Area | | UT TOPO DATE | | PROJECT NO.
TASK NO.
PAGE | 844008
1000000
OF | |---------------------------------------|--------------|-----------------------------|---------------|-----------------|-------------------------------------|--|-------------------------| | AREA OR
CONTOUR | PLAN | NIMETER REA
(Acres)
2 | ADING AVERAGE | AREA
(Acres) | MID-CONTOUR
AVERAGE
(Sq. ft.) | CONTOUR
INTERVAL
(Ft.) | VOLUME
(Cu.yd.) | | | | 1 | | | | | | | El | 4.298 | 4.298 | 4.3 | 3. | | | | | E2 | 2.733 | 2.747 | 2.7 | <u> </u> | | t | | | E3 | 2.854 | 2.840 | 2.8 | | | | | | E4 | 2.740 | 2.726 | 2.7 | <u> </u> | | | | | E5 | 2.950 | 2.971 | 3.0 | | | | | | E6 | 1.445 | 1.445 | 1.4 | <u> </u> | 1 | | | | · | | | | | | | | | Fl | 3.434 | 3.462 | 3.4 | | | | | | F2 | 2.868 | 2.822 | 2.8 | | | | | | F3 | 3.516 | 3.498 | 3.5 | | | | | | F4 | 4.850 | 4.871 | 4.9 | | | | | | | | | | | <u> </u> | | | | GI | 1.548 | 1.580 | 1.6 | | | | · . | | , | | .! | | | | | | | <u> </u> | | 1 | | | | - | | | | | + | | | | | , | | <u> </u> | - | | | | | | | | | | 1 | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | <u> </u> | | | | | | | <u> </u> | 1 | | | | | | | | | | | | | | | | | | | | | | <u></u> | | | | | | | | TOTAL | | | | | TOTAL | | | | BY: | ESA | DATE | 8/4/03 | REMARKS | | | | | CHKD: | | DATE | | REMARKS | | | | ## SUBAREA PEAK FLOWS (A through G) ct : Mountain View LF User: Shaw Date: 08-06-2003 y : Salt Lake itle: Drainage Analysis Checked: ____ Date: State: UT | | | - | | | | | | | | |---------------------|-----------------------|-------------|-------------|-----------|-----------------------|-----------------------|------------------|-----------------------|---------| | watersh | ed area | .: 0.02 | 6 sq mi | i Rain | fall typ | pe: II | Freq | quency: 2 | 5 years | | | | | | | Subareas | | | | | | , , , | A1 | A2 | A3 | B1 | B2 | B3 | B4 | C5b | | | (im pa) | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | | | <pre>[all(in)</pre> | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | | | <pre>number</pre> | 88 | 88 | 88 | 86 | 88 | 88 | 88 | 88 | | | <pre>[f(in)</pre> | 1.51 | 1.51 | 1.51 | 1.37 | 1.51 | 1.51 | 1.51 | 1.51 | | | ırs) | 0.06 | 0.05 | 0.08 | 0.09 | | 0.05 | 0.08 | 0.09 | | | (Used) | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | | | [OOutlet | 0.06 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.00 | 0.00 | | | (Used) | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | | | | 0.10 | 0.10 | 0.10 | 0.12 | 0.10 | 0.10 | 0.10 | 0.10 | | | Total - | | 9 | uharea | Contrib | oution t | o Total | El Ow | (cfa) | | | Flow | A1 | A2 | A3 | B1 | B2 | B3 | B4 | C5b | | | 1 101 | ••• | ••• | | 5. | 2- | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 10 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | | | 22 | 2P | 2 | 4 | 2 | 3 | 2 | 3 | 4 | | | 34P | 2 | 3 P | 6P | 4P | 6 | 3 P | 4 F | | | | 28 | 2 | 2 | 4 | 2 | 9P | 2 | 3 | 4 | | | 15 | 1 | 1 | 1 | 1 | 8 | 1 | 1 | 1 | | | 8 | 0 | 0 | 1 | 3 | 4 | 0 | 1 | 1 | • | | 8
5 | 0 | 0 | 1 | 1 | 2 | 0 | 1 | 1 | | | | | | 1
1 | 0 | 2 | . 0 | 0 | 1 | • | | 4
2 | 0
0 | 0
0 | 0 | 0 | 1 | . 0 | · 0 | 1
1 | | | 1 | 0 | 0 | | 0 | 1 | 0 | 0 | | | | | 0 | | 0 | 0 | 1 | 0 | | 0 | | | 1 | | 0 | 0 | 0 | | | . 0 | 0 | • | | 1 | 0
0 | 0
0 | 0 | 0 | 1
1 | 0
0 | 0 | 0 | • | | 1 | U | U | 0 | 0 | | U | U | 0 | | | 1 | 0 | 0 | 0 | 0 | 1 | . 0 | 0 | 0 | | | 0 | Ö | 0 | 0 | 0 | 0 | . 0 | 0 | 0 | | | 0 | | 0 | | _ | | | | ^ | | | 0 | 0 | 0
0 | 0
0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | | 0 | Ō | 0 | 0 | 0 | 0 | | | 0 | 0 | Ō | 0 | | 0 | . 0 | 0 | Ō | | | 0 | Ō | 0
0
0 | Ô | 0
0 | Ô | 0. | . 0 | Ô | | | 0
0
0
0 | 0
0
0
0
0 | 0 | 0
0
0 | Ö | 0
0
0
0
0 | 0
0
0
0
0 | 0
0
0 | 0
0
0
0
0 | | | | | | | | | | | | | | 0 0 0 0 0 0 0 | 0
0
0
0
0 | 0 | 0 | 0 | 0
0
0 | 0 | 0
0
0
0 | 0
0
0
0
0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0
0 | . 0 | . 0 | | | 0 | 0 | 0 | 0 | 0 | | | . 0 | 0 | • | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | . 0 | . 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | , | | 0 | 0 | 0 | . 0 | 0 | . 0 | 0 | 0 | 0 | | | ^ | 0 | Λ | Λ | 0 | Λ | Λ | | ^ | | ct : Mountain View LF User: Shaw Date: 08-06-2003 | y : Sal
itle: Dra | | nalysis | | te: UT | Ch | ecked: | Da | te: _ | · | |---|---------------------------------------|---|---|---|--|---|------------|-------|-------| | l watersh | ed area | .: 0.02 | 5 sq mi | Rainf | all typ
ubareas | e: II | Frequency | : 25 | years | | | 0.08
0.10
0.01 | C2
0.00
2.7
88
1.51
0.05
0.10
0.01
0.01
0.10 | 2.7
88
1.51
0.09
0.10
0.00
0.00 | C4
0.01
2.7
88
1.51
0.10
0.10
0.00
0.00
0.10
0.10 |
C5a
0.00
2.7
88
1.51
0.08
0.10
0.00 | C6
0.00
2.7
90
1.67
0.03
0.10
0.00
0.00
0.08
0.10 | | | | | Total -
Flow | C1 | S
C2 | ubarea
C3 | Contrib
C4 | ution t
C5a | o Total
C6 | Flow (cfs) | | | | 0
0
1
13
25
37P
24
9 | 0
0
0
2
4
6P
4
1 | 0
0
0
1
2P
2
2 | 0
0
0
3
5
8P
5
2 | 0
0
1
4
8
12P
7
3 | 0
0
0
2
4
6P
4 | 0
0
0
1
2
3P
2 | | | | | 5
4
4
2
2
1
1 | 1
1
1
0
0
0 | 0
0
0
0
0 | 1
1
1
1
1
0
0 | 2
1
1
1
1
1
1 | 1
1
1
0
0
0 | 0
0
0
0
0
0 | | | | | 1
0
0
0
0
0
0 | 0
0
0
0
0
0 | 0
0
0
0
0
0 | 0
0
0
0
0
0 | 1
0
0
0
0
0 | 0
0
0
0
0
0 | 0
0
0
0
0
0 | | | | | 0
0
0
0
0
0 | 0
0
0
0
0 | 0 | 0
0
0
0
0
0 | 0
0
0
0
0 | 0
0
0
0
0 | 0
0
0
0
0 | | | , | ect : Mountain View LF User: Shaw Date: 08-06-2003 ty : Salt Lake State: UT Checked: ___ Date: ___ itle: Drainage Analysis | l watersh | ed area | a: 0.0 | L3 sq m | i Rainf | all type | : II | Fre | quency | : 25 y | ears | |-----------------|--------------|--------------|--------------|--------------|----------------|-------|--------|--------|--------|------| | | D1 | D2 | D3 | D4 | Subareas
D5 | | | | | | | (sq mi) | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | fall(in) | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | | | | | • | | e number | 86 | 88 | 88 | 88 | 88 | | | | | | | ff(in) | 1.37 | 1.51 | 1.51 | 1.51 | 1.51 | • | | | | | | ars) | 0.20 | 0.08 | 0.08 | 0.08 | 0.12 | | | | | | | (Used) | 0.20 | 0.10 | 0.10 | 0.10 | 0.10 | | | | | | | FoOutlet (Used) | 0.01
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | | | | • | | (Useu) | 0.12 | 0.10 | 0.10 | 0.10 | 0.10 | | | | | | | Total - | | 8 | Subarea | Contrib | oution to | Total | Flow | (cfs) | | | | Flow | D1 | D2 | D3 | D4 | D5 | 10001 | 1 1011 | (015) | | | | 0 | 0 | 0 | 0 | 0 | 0 | | | , | | | | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | 6 | 2 | 1 | 1 | 1 | 1 | | | | | | | 11 | 3
6P | 2
3P | 2 | 2P | 2
2 D | | | | | | | 17P
14 | 6 | 2 | 3P
2 | 2
2 | 3 P
2 | | | | | | | 8 | 4 | 1 | 1 | 1 | 1 | | | | | | | 2 | 2 | 0 | 0 | 0 | 0 | | | • | | | | 1 | 1 | 0 | 0 | 0 | O | | | | | | | 1 | 1 | 0 | 0 | 0 | 0 | | | | | | | 1 | 1 | 0 | 0 | 0 | 0 | | | | | | | 1 | 1 | 0 | 0 | 0 | 0 | • | | | | | | 1 | 1 | 0 | 0 | 0 | 0 | | | | | | | 1
0 | 1
0 | 0
0 | 0
0 | 0
0 | 0 | | | | • | | | U | U | U | U | U | 0 | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | 0 | 0
0 | 0 | 0 | 0 | 0 | | | | | | | 0 | • | • | 0
0 | 0 | `0
`0 | | | | | | | ő | 0
0 | 0
0 | 0- | 0 | 0 | | | | | | | . 0 | ŏ | Ö | 0 | Ö | 0. | | | | | | | . 0 | ō | Ö | . 0 | | Ö | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | | | | • | | | 0 | . 0 | 0 | 0 | 0 | 0 | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | | • | | | | | 0
0
0 | 0 | 0 | . 0 | 0 | 0 | | | | | | | | 0 | 0 | 0 | 0 | 0 | | • | | | | | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | ct : Mountain View LF User: Shaw Date: 08-06-2003 cy : Salt Lake State: UT Checked: ___ Date: ___ | cy : Sal | | | | ate: UT | (| necked: | | Dat | te: | |-----------------|----------|----------|-------------|---------|--------|------------------|------|--------|------------| | itle: Dra | inage A | malysis | 5 | | | | | | | | l waters | ned area | | esq mi | | all ty | | | quency | : 25 years | | | E1 | E2 | E3 | E4 | E5 | E6 | | | : | | (sq mi) | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | fall(in) | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | | | | | e number | 86 | 88 | 88 | 88 | 88 | 90 | | | | | ff(in) | 1.37 | 1.51 | 1.51 | 1.51 | 1.51 | 1.67 | | | | | ars) | 0.16 | 0.12 | 0.12 | 0.12 | 0.08 | 0.02 | | | | | (Used) | 0.20 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | | | | | roOutlet | | 0.00 | 0.00 | 0.00 | | | | | | | (Used) | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | / | 0.12 | 0.10 | 0.10 | 0.10 | | | | 4 | | | (Used) | 0.12 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | | | | | Total - | | S | Subarea | Contrib | ution | to Total | Flow | (cfs) | | | Flow | E1 | E2 | E3 | E4 | E5 | E6 | | (OLD) | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 0 | . 0 | 0 | 0 | 0 | 0 | 0 | | | | | 11 | 2 | 2 | 2 | 2 | 2 | 1 | | | | | 22
37P | 3 | 4
6 P | 4 | 4 | 5 | 2 | | | | | 25 | 7P | | 7P | 6P | 71 | | | | | | 10 | 7
4 | 4
1 | 4
1 | 4
1 | 4
2 | 2
1 | | | | | 10 | • | - | _ | - | 2 | • | | | | | 7 | 2 | 1 | 1 | 1 | 1 | 1 | | | | | 6 | 2 | 1 | 1 | 1 | 1 | 0 | | | · | | 5 | 1 | 1 | 1 | 1 | 1 | 0 | | | | | 5 | 1 | 1 | 1 | 1 | 1 | 0 | | | | | 3 | 1 | 0 | 1 | 0 | 1 | 0 | | | | | 1 | 1 | 0 | 0 | 0 | 0 | 0 | | | | | · 1 | 1
1 | 0
0 | . 0 | 0 | 0 | 0 | | | | | 1 | T | U | 0 | 0 | U | 0 | | | | | 0 | 0 | 0 | 0 | . 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | 1 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | . 0 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0
0
0
0 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | . 0 | Ö | Ö | Õ | Ö | Ö | Ö | • | | | | 0 | 0 | Ö | 0 | 0 | ŏ | Ō | | | | | Ö | Ō | Ö | 0
0
0 | Õ | Ö | 0
0
0 | | | | | Ö | . 0 | 0 | Ō | Ō | Ō | 0 | | | | | Q | 0 | 0 | . 0 | 0 | 0 | 0 | | | | | _ | _ | _ | _ | _ | _ | _ | | | | 0 0 0 #### TABULAR HYDROGRAPH METHOD ct : Mountain View LF User: Shaw Date: 08-06-2003 y : Salt Lake State: UT Checked: ___ Date: ___ itle: Drainage Analysis | l watersh | ed area | a: 0.02 | 23 sq mi | | _ | _ | Frequency: 25 years | |-----------|---------|---------|----------|------|---------|----|---------------------| | | | | | | Subarea | ıs | | | | F1 | F2 | F3 | F4 | | | | | (sq mi) | 0.01 | 0.00 | 0.01 | 0.01 | | | | | Eall(in) | 2.7 | 2.7 | 2.7 | 2.7 | | | | | ₃ number | 88 | 88 | 88 | 88 | | | | | ff(in) | 1.51 | 1.51 | 1.51 | 1.51 | ۶. | | | | ırs) | 0.16 | 0.08 | 0.09 | 0.13 | | | | | (Used) | 0.20 | 0.10 | 0.10 | 0.10 | | | | | [OOutlet | 0.00 | 0.00 | 0.00 | 0.00 | | | | | (Used) | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | Λ 1 Λ | 0 10 | 0 10 | 0 10 | | | · · | | (usea) | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | |-----------------|------|---------|---------------|------------------|-------|-------|------|-------|-----------| | Total -
Flow | .F1 | £
F2 | Subarea
F3 | Contributi
F4 | on to | Total | Flow | (cfs) | - | | Ó | 0 | 0. | 0 | o | | (| | | | | 0 | 0 | 0 | 0 | 0 | | | | | | | 1 | 0 | 0 | 0 | 1 | | | | | | | 11 | 2 3 | 2 | 3 | 4 | | | | | | | 20 | . 3 | 4 | 5 | 8 | | | | | | | 33P | 6P | 7 P | 8 P | 12P | | | | | | | 22 | 6 | 4 | 5
2 | · 7 | | • | | | | | 10 | 4 | 1 | 2 | 3 | | | | | | | 6 | 2 | 1 | 1 | 2 | | | | | | | 4 | 1 | 1 | 1 | 1 | | | | | | | 4 | 1 | 1 | 1 | 1 | | | | | | | 4 | 1 | 1 | 1 | 1 | | | | | | | 4 | 1 | . 1 | . 1 | 1 | | | | | | | 3 | 1 | 0 | 1 | 1 | | | | | | | 1 | 0 | 0 | 0 | 1 | | | | | | | 1 | 0 | 0 | 0 | 1 | | | | | | | 1 | 0 | 0 | 0 | 1 | | • | | | | | 0 | 0 | 0 | 0 | 0 | | | | | | | 0 | 0 | 0 | 0 | 0 | | | | | | | 0 | 0 | 0 | 0 | 0 | | | | | | | 0 | 0 | 0 | 0 | 0 | | | | 4 | | | 0 | 0 | 0 | <u>0</u>
0 | 0 | | | | • | | | 0 | 0 | 0 | | 0 | | | | | | | 0 | 0 | 0 | 0 | . 0 | | | | | | | 0 . | 0 | 0 | 0 | 0 | | | | | | | 0 | 0 | 0 | 0 | 0 | | | | | | | 0 | 0 | 0 | 0 | 0 | | | • | | | | . 0 | 0 | 0 | 0 | 0 | | | | | • | | 0 | 0 | 0 | 0 | 0 | | | | | | ``` User: Shaw ct : Mountain View LF Date: 08-06-2003 cy : Salt Lake State: UT Checked: Date: ____ itle: Drainage Analysis L watershed area: 0.002 sq mi Rainfall type: II Frequency: 25 years ----- Subareas ----- G1 0.00 (sq mi) fall(in) 2.7 e number 88 ff(in) 1.51 irs) 0.03 0.10 (Used) roOutlet 0.00 0.10 Total ----- Subarea Contribution to Total Flow (cfs) ------ G1 Flow 0 0 0 0 0 0 1 1 2 2 4 P 4 P 2 2 1 1 1 0 ``` # COMBINED FLOW TO NORTHWEST DETENTION POND #### TABULAR HYDROGRAPH METHOD ect : Mountain View LF User: Shaw Date: 08-06-2003 y : Salt Lake State: UT Checked: Date: itle: Combined Flow to Northwest Detention Pond watershed area: 0.050 sq mi Rainfall type: II Frequency: 25 years A1-A3 B1-B4 C1-C6 (sa mi) 0.01 0.01 0.03 2.7 2.7 2.7 fall(in) number 1.51 ff(in) 1.51 1.51 ırs) 0.08 0.11 0.10 (Used) 0.10 0.10 0.10 roOutlet 0.05 0.00 0.00 (Used) 0.00 0.00 0.00 0.10 0.10 0.10 Total ----- Subarea Contribution to Total Flow (cfs) ---Flow A1-A3 B1-B4 C1-C6 11P 22P 77P 44P . 3 # COMBINED FLOW TO SOUTHWEST DETENTION POND ct : Mountain View LF Date: 08-06-2003 User: Shaw y : Salt Lake State: UT Checked: Date: itle: Combined Flow to Southwest Detention Pond l watershed area: 0.040 sq mi Rainfall type: II Frequency: 25 years ----- Subareas ---D1-D5 E1-E6 0.01 0.03 (sq mi) 2.7 2.7 fall(in) ∍ number ff(in) 1.51 1.51 ars) 0.20 0.17 (Used) 0.20 0.20 roOutlet 0.00 0.00 0.10 0.10 Total ----- Subarea Contribution to Total Flow (cfs) ----D1-D5 E1-E6 Flow . 3 48P 16P 32P . 2 . 1 # COMBINED FLOW TO SOUTHEAST DETENTION POND User: Shaw ct : Mountain View LF Date: 08-06-2003 y : Salt Lake State: UT Checked: Date: itle: Combined Flow to Southeast Detention Pond l watershed area: 0.023 sq mi Rainfall type: II Frequency: 25 years F1 F2 F3 F4 (sq mi) 0.01 0.00 0.01 0.01 2.7 2.7 2.7 Eall(in) 2.7 e number 1.51 1.51 Ef(in) 1.51 1.51 0.08 nrs) 0.16 0.09 0.13 (Used) 0.20 0.10 0.10 0.10 FoOutlet 0.00 0.00 0.00 0.00 (Used) 0.00 0.00 0.00 0.00 0.10 0.10 0.10 0.10 Total ----- Subarea Contribution to Total Flow (cfs) ------F1 F2 Flow F3 F4 . 0 5 -7P 4 6P 8 P 33P 12P 3. # APPENDIX C-2 HYDRAULIC CALCULATIONS #### **DETENTION POND VOLUME**
Mountain View Landfill Salt Lake County, Utah #### **Detention Pond Volume** | | T | | | T | |-----------------------------------|-----------------------------|--------------------------------|-------------|----------| | | A1 | A2 | D | V | | · | (ac) | (ac) | (ac) | (ac-ft) | | Northwest Detention Pond | 0.235 | 0.450 | 5.0 | 1.68 | | Southwest Detention Pond | 0.203 | 0.436 | 5.0 | 1.56 | | Southeast Detention Pond | 0.068 | 0.176 | 5.0 | 0.59 | | Notes: | | | | | | 1. Basin inboard slopes approxima | | | | | | 2. Pond volume is based on volum | e formula, $V = ((A1 + A))$ | $(2 + (A1 + A2)^{0.5})/3$ (D), | where: | | | V = volume, in acre-feet | | | | | | A1 = base area, in acres | | | | | | A2 = top area, in acres | | | | | | D = average depth, in feet | | | | | | Abbreviations: | ļ | | · | | | ac-ft = acre-feet | | | | | | cfs = cubic per second | | | | | | ft = feet | | | | | | | <u></u> | J | <u> </u> | <u> </u> | | Shaw- | EMCON | |-------|--------------| EMCON/OWT, INC ## **QUANTITY CALCULATIONS** | , | EMICOMOAAI | | _ | | | | | |---------------|--------------|---------------|----------------|--------------|-------------|---|-------------| | PROJECT TITLE | | Mtn View L | | _PROJECT NO | | | | | CALCULATIO | | Pond Volume | <u> </u> | | | TASK NO. | 0000001 | | SCALE | 1" = [00' | | | TOPO DATE | | PAGE | OF | | - | PLA | NIMETER REA | ADING | . ' | MID-CONTOUR | | | | AREA OR | | (Sq. ft.) | | AREA | AVERAGE | INTERVAL | VOLUME | | CONTOUR | 1 | 2 | AVERAGE | (Acres) | (Sq. ft.) | (ft.) | (Cu.yd.) | | | 1 | | | | t | 1 | ı | | = | | 1 | 1 | N. | L | | | | NW Detention | Pond | | / | | 4 | 1 | i | | 4215 | 10,540 | 9,920 | 10,230 | 0.235 | | | 1 | | | | | | | | <u></u> | | | 4220 | 19,375 | 19,840 | 19,608 | 0.450 | 4 | 1 |
i | | | | <u> </u> | 1 | 1' | | | , | | ; | 1 | + | | · | | | | | SW Detention | Pond | | / | | 4 | 1 | ı | | 4215 | 8,990 | 8,680 | 8,835 | 0.203 | | 1 | 1 | | | | | | | <u> </u> | | · | | 4220 | 18,910 | 19,065 | 18,988 | 0.436 | 4 | 1 | <u> </u> | | · | | | | · | | | | | | | | 1 | ' | (L | | | | SE Detention | Pond | + | | | 4 | | | | 4217 | 2,945 | 2,945 | 2,945 | 0.068 | | | | | | | | | | Ĺ | 1 | · | | 4222 | 7,750 | 7,595 | 7,673 | 0.176 | | | | | | _ | _ | 1 | 1 _' | | | | | | | • | 1 | | | <u></u> | | | <u> </u> | | | + | | | | | | | | - | | | . | | | | | | | | | , | | | | | | | ! | 1 | | | | | | | | 1 | 1 | (| 1 | | | l | | - | | | 4 | 1 | | | | | | | [| 1 | | | | | | 1 | | | ' | | | | | | + | 1 | | | | | | | - | + | | | | | | | <u> </u> | | + | | | | | | | , | - | | 1 | l | | | | | · | | | | | | r | | | TOTAL | | |) | 1 1 | TOTAL | | - | | - | CCA | DATE | · 0/7/01 | | | | | | BY: | ESA | DATE | | REMARKS | | | | | CHKD: | | DATE | | REMARKS | | | | #### NORTHWEST DETENTION POND #### STORAGE VOLUME FOR DETENTION BASINS Version 2.10 et : Mountain View LF User: Shaw Date: 08-06-2003 Y : Salt Lake State: UT Checked: ____ Date: ____ itle: Northwest Detention Pond Orainage Area: .0505 Sq miles Rainfall Frequency: 25 years Rainfall-Type: II Runoff: 1.5 inches Peak Inflow: 77.00 cfs Peak Outflow: 40.00 cfs Detention Basin Storage Volume: 0.41 inches or 1.1 acre feet ## Circular Channel Analysis & Design Solved with Manning's Equation #### Open Channel - Uniform flow Worksheet Name: Mtn View LF, UT Comment: NW Detention Pond - Outlet Pipe Solve For Actual Depth Given Input Data: Diameter..... 2.00 ft Slope..... 0.0150 ft/ft Manning's n..... 0.015 Discharge..... 20.00 cfs (X 2 = 40 cfs) Computed Results: Full Capacity.... 24.01 cfs QMAX @.94D..... 25.83 cfs Froude Number..... 1.34 (flow is Supercritical) Open Channel Flow Module, Version 3.21 (c) 1990 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 #### **SOUTHWEST DETENTION POND** ### STORAGE VOLUME FOR DETENTION BASINS ct : Mountain View LF User: Shaw Date: 08-06-2003 Y : Salt Lake State: UT Checked: ____ Date: ____ tle: Southwest Detention Pond Orainage Area: .0397 Sq miles Rainfall Frequency: 25 years lainfall-Type: II Runoff: 1.5 inches Peak Inflow: 48.00 cfs Peak Outflow: 25.00 cfs Detention Basin Storage Volume: 0.41 inches or 0.9 acre feet #### Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Mtn View LF, UT Comment: SW Detention Pond - Outlet Pipe Solve For Actual Depth Given Input Data: 2.00 ft Diameter..... Slope........ 0.0150 ft/ft 0.015 Manning's n..... 25.00 cfs Discharge..... Computed Results: 1.72 ft Depth.... Velocity..... 8.68 fps Flow Area..... 2.88 sf 1.76 ft Critical Depth.... 0.0146 ft/ft Critical Slope.... Percent Full..... 86.24 % Full Capacity..... QMAX @.94D..... Full Capacity.... 24.01 cfs 25.83 cfs 1.06 (flow is Supercritical) Froude Number.... ## SOUTHEAST DETENTION POND t : Mountain View LF User: Shaw Date: 08-06-2003 : Salt Lake State: UT Checked: ____ Date: _____ tle: Southeast Detention Pond rainage Area: .0229 Sq miles Rainfall Frequency: 25 years ainfall-Type: II unoff: 1.5 inches eak Inflow: 33.00 cfs eak Outflow: 20.00 cfs etention Basin Storage Volume: 0.36 inches or 0.4 acre feet #### Circular Channel Analysis & Design Solved with Manning's Equation #### Open Channel - Uniform flow Worksheet Name: Mtn View LF, UT Comment: SE Detention Pond - Outlet Pipe Solve For Actual Depth Given Input Data: Diameter..... 2.00 ft Slope..... 0.0100 ft/ft Manning's n..... 0.015 Discharge..... 20.00 cfs Computed Results: Full Capacity.... 19.61 cfs QMAX @.94D..... 21.09 cfs Froude Number..... 0.91 (flow is Subcritical) # TOP DECK DIVERSION BERM #### Trapezoidal Channel Analysis & Design Open Channel - Uniform flow Worksheet Name: Mtn View LF, UT Description: Top Deck Diversion Berm Solve For Depth Given Constant Data; | Z-Left | . 5.00 | |--------------|--------| | Z-Right | . 2.00 | | Mannings 'n' | | | ıble Input Data | Minimum | Maximum | Increment By | |---|---------|---------|--------------| | :====================================== | ***=*= | ====== | ========== | | om Width | 0.00 | 1.00 | 1.00 | | inel Slope | 0.0100 | 0.0200 | 0.0050 | | nel Discharge | 1.00 | 10.00 | 1.00 | #### RIABLE VARIABLE COMPUTED VARIABLE COMPUTED ______ Channel Velocity Z-Left Z-Right Mannings Channel Channel ottom 'n' Discharge (H:V) Slope Depth idth (H:V)ft/ft ft cfs 5.00 2.00 0.020 0.0100 0.35 1.00 .00 2.27 5.00 2.00 0.24 .00 0.020 0.0100 1.00 2.21 .00 5.00 2.00 0.020 0.0150 0.33 1.00 2.65 .00 5.00 2.00 0.020 0.0150 0.22 1.00 2.56 .00 5.00 2.00 0.020 0.31 1.00 0.0200 2.95 1.00 2.00 0.020 0.0200 0.20 .00 5.00 2.84 .00 5.00 2.00 0.020 0.0100 0.46 2.00 2.70 .00 5.00 2.00 0.020 0.0100 0.34 2.00 2.66 .00 5.00 2.00 0.020 0.0150 0.43 2.00 3.15 0.020 .00 5.00 2,00 0.0150 0.31 2.00 3.09 5.00 2.00 0.020 0.40 .00 0.0200 2.00 3.51 .00 5.00 2.00 0.020 0.0200 0.29 2.00 3.43 2.00 0.020 0.54 .00 5.00 0.0100 3.00 2.99 .00 5.00 2.00 0.020 0.0100 0.41 3.00 2.96 0.50 .00 5.00 2.00 0.020 0.0150 3.00 3.48 5.00 2.00 0.020 0.38 .00 0.0150 3.00 3.44 0.47 .00 5.00 2.00 0.020 0.0200 3.00 3.88 .00 5.00 2.00 0.020 0.0200 0.35 3.00 3.82 2.00 0.020 0.60 00 5.00 0.0100 4.00 3.21 5.00 2.00 0.020 0.0100 0.47 bo. 4.00 3.19 .00 5.00 2.00 0.020 0.0150 0.55 4.00 3.74 .00 5.00 2.00 0.020 0.0150 0.43 4.00 3.70 0.52 .00 5.00 2.00 0.020 0.0200 4.00 4.17 .00 5.00 2.00 0.020 0.40 0.0200 4.12 4.00 .00 5.00 2.00 0.020 0.0100 0.65 5.00 3.40 .00 2.00 0.52 5.00 0.020 0.0100 5.00 3.38 00 5.00 2.00 0.020 0.0150 0.60 5.00 3.96 00 2.00 0.020 0.48 5.00 0.0150 3.92 5.00 00 2.00 0.020 0.0200 0.57 5.00 5.00 4.41 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.0200 0.0100 0.0100 0.0150 0.0150 0.0200 0.0200 0.0100 0.0100 0.0150 0.0150 0.45 0.69 0.57 0.64 0.52 0.61 0.49 0.74 0.61 0.68 0.56 5.00 6.00 6.00 6.00 6.00 6.00 6.00 7.00 7.00 7.00 7.00 4.37 3.56 3.54 4.14 4.11 4.61 4.58 3.70 3.68 4.30 4.28 00 00 00 00 00 00 00 00 00 00 00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 Open Channel Flow Module, Version 3.21 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 #### RIABLE #### VARIABLE COMPUTED VARIABLE COMPUTED | ======== | | | | | | | | |----------|----------|---------|---------|-----------|---------|-----------|---| | ottom | Z-Left | Z-Right | | s Channel | | | - | | idth | (H:V) | (H:V) | 'n' | | Depth | Discharge | rps | | ft | | | | ft/ft | ft | cfs | | | ***** | :======= | | ======= | ======= | ======= | ******* | ======================================= | | .00 | 5.00 | 2.00 | 0.020 | 0.0200 | 0.65 | 7.00 | 4.79 | | .00 | 5.00 | 2.00 | 0.020 | 0.0200 | 0.52 | 7.00 | 4.76 | | .00 | 5.00 | 2.00 | 0.020 | 0.0100 | 0.77 | 8.00 | 3.82 | | .00 | 5.00 | 2.00 | 0.020 | 0.0100 | 0.65 | 8.00 | 3.81 | | .00 | 5.00 | 2.00 | 0.020 | 0.0150 | 0.72 | 8.00 | 4.45 | | .00 | 5.00 | 2.00 | 0.020 | 0.0150 | 0.59 | 8.00 | 4.43 | | .00 | 5.00 | 2.00 | 0.020 | 0.0200 | 0.68 | 8.00 | 4.96 | | .00 | 5.00 | 2.00 | 0.020 | 0.0200 | 0.55 | 8.00 | 4.93 | | .00 | 5.00 | 2.00 | 0.020 | 0.0100 | 0.81 | 9.00 | 3.94 | | .00 | 5.00 | 2.00 | 0.020 | 0.0100 | 0.68 | 9.00 | 3.92 | | .00 | 5.00 | 2.00 | 0.020 | 0.0150 | 0.75 | 9.00 | 4.58 | | .00 | 5.00 | 2.00 | 0.020 | 0.0150 | 0.62 | 9.00 | 4.56 | | .00 | 5.00 | 2,00 | 0.020 | 0.0200 | 0.71 | 9.00 | 5.11 | | .00 | 5.00 | 2.00 | 0.020 | 0.0200 | 0.58 | 9.00 | 5.08 | | .00 | 5.00 | 2.00 | 0.020 |
0.0100 | 0.84 | 10.00 | 4.04 | | .00 | 5.00 | 2.00 | 0.020 | 0.0100 | 0.71 | 10.00 | 4.03 | | .00 | 5.00 | 2.00 | 0.020 | 0.0150 | 0.78 | 10.00 | 4.71 | | .00 | 5.00 | 2.00 | 0.020 | 0.0150 | 0.65 | 10.00 | 4.69 | | _ 00 | 5.00 | 2.00 | 0.020 | 0.0200 | 0.74 | 10.00 | 5.24 | | 00 | 5.00 | 2.00 | 0.020 | 0.0200 | 0.61 | 10.00 | 5.22 | # LF BENCH DRAINAGE DITCH ## Trapezoidal Channel Analysis & Design Open Channel - Uniform flow Worksheet Name: Mtn View LF, UT Description: LF Bench Drainage Ditch Solve For Depth Given Constant Data; | Bottom Width | 0.00 | |--------------|------| | Z-Left | 2.00 | | Z-Right | 2.00 | | able Input Data | Minimum | Maximum | Increment By | |---|---------|---------|--------------| | ======================================= | ====== | | 222222222 | | nings 'n' | 0.020 | 0.030 | 0.005 | | nnel Slope | 0.0100 | 0.0300 | 0.0050 | | nnel Discharge | 1.00 | 10.00 | 1.00 | | | | | | | | VARIABLE | | |---------------------|-----------------|------------------|-----------------|---------------------|------------------------|-----------------------------|----------| | ottom
idth
ft | Z-Left
(H:V) | Z-Right
(H:V) | Mannings
'n' | Channel Slope ft/ft | Channel
Depth
ft | Channel
Discharge
cfs | Velocity | | .00 | 2.00 | 2.00 | 0.020 | 0.0100 | 0.44 | 1.00 | 2.53 | | .00 | 2.00 | 2.00 | | 0.0100 | 0.48 | 1.00 | 2.14 | | .00 | 2.00 | 2.00 | 0.030 | 0.0100 | 0.52 | 1.00 | 1.87 | | .00 | 2.00 | 2.00 | | 0.0150 | 0.41 | 1.00 | 2.95 | | .00 | 2.00 | 2.00 | | 0.0150 | 0.45 | 1.00 | 2.49 | | .00 | 2.00 | 2.00 | 0.030 | 0.0150 | 0.48 | 1.00 | 2.17 | | .00 | 2.00 | 2.00 | 0.020 | 0.0200 | 0.39 | 1.00 | 3.28 | | .00 | 2.00 | 2.00 | | 0.0200 | 0.42 | 1.00 | 2.78 | | .00 | 2.00 | 2.00 | 0.030 | 0.0200 | 0.45 | 1.00 | 2.42 | | .00 | 2.00 | 2.00 | 0.020 | 0.0250 | 0.37 | 1.00 | 3.57 | | .00 | 2.00 | 2.00 | 0.025 | 0.0250 | 0.41 | 1.00 | 3.02 | | .00 | 2.00 | 2.00 | 0.030 | 0.0250 | 0.44 | 1.00 | 2.63 | | .00 | 2.00 | 2.00 | 0.020 | 0.0300 | 0.36 | 1.00 | 3.82 | | .00 | 2.00 | 2.00 | 0.025 | 0.0300 | 0.39 | 1.00 | 3.23 | | .00 | 2.00 | 2.00 | 0.030 | 0.0300 | 0.42 | 1.00 | 2.82 | | .00 | 2.00 | 2.00 | 0.020 | 0.0100 | 0.58 | 2.00 | 3.01 | | .00 | 2.00 | 2.00 | 0.025 | 0.0100 | 0.63 | 2.00 | 2.55 | | .00 | 2.00 | 2.00 | | 0.0100 | 0.67 | 2.00 | 2.22 | | 00 | 2.00 | 2.00 | | 0.0150 | 0.53 | 2.00 | 3.50 | | 00 | 2.00 | 2.00 | | 0.0150 | 0.58 | 2.00 | 2.96 | | .00 | 2.00 | 2.00 | 0.030 | 0.0150 | 0.62 | 2.00 | 2.59 | | .00 | 2.00 | 2.00 | 0.020 | 0.0200 | 0.51 | 2.00 | 3.90 | | .00 | 2.00 | 2.00 | 0.025 | 0.0200 | 0.55 | 2.00 | 3.30 | | .00 | 2.00 | 2.00 | 0.030 | 0.0200 | 0.59 | 2.00 | 2.88 | | .00 | 2.00 | 2.00 | 0.020 | 0.0250 | 0.49 | 2.00 | 4.24 | | .00 | 2.00 | 2.00 | 0.025 | 0.0250 | 0.53 | 2.00 | 3.59 | | .00 | 2.00 | 2.00 | 0.030 | 0.0250 | 0.57 | 2.00 | 3.13 | | .00 | 2.00 | 2.00 | 0.020 | 0.0300 | 0.47 | 2.00 | 4.54 | | . 00 | 2.00 | 2.00 | 0.025 | 0.0300 | 0.51 | 2.00 | 3.84 | | .00 | 2.00 | 2.00 | 0.030 | 0.0300 | 0.55 | 2.00 | 3.35 | | .00 | 2.00 | 2.00 | 0.020 | 0.0100 | 0.67 | 3.00 | 3.33 | | .00 | 2.00 | 2.00 | 0.025 | 0.0100 | 0.73 | 3.00 | 2.82 | | .00 | 2.00 | 2.00 | | 0.0100 | 0.78 | 3.00 | 2.46 | | .00 | 2.00 | 2.00 | | 0.0150 | 0.62 | 3.00 | 3.88 | | .00 | 2.00 | 2.00 | | 0.0150 | 0.68 | 3.00 | 3.28 | | .00 | 2.00 | 2.00 | | 0.0150 | 0.72 | 3.00 | 2.86 | | .00 | 2.00 | 2.00 | | 0.0200 | 0.59 | 3.00 | 4.32 | | .00 | 2.00 | 2.00 | | 0.0200 | 0.64 | 3.00 | 3.65 | | .00 | 2.00 | 2.00 | 0.030 | 0.0200 | 0.69 | 3.00 | 3.19 | 0.020 0.0250 .00 2.00 2.00 0.57 3.00 4.70 | | | | | | | VARIABLE C | | |---------------------|-----------------|-------|-----------------|--------|------------------------|-------------------------------|--------------| | ottom
idth
ft | Z-Left
(H:V) | (H:V) | Mannings
'n' | | Channel
Depth
ft | Channel V
Discharge
cfs | | | .00 | 2.00 | 2.00 | | 0.0250 | 0.61 | 3.00 | 3.97 | | .00 | 2.00 | 2.00 | | 0.0250 | 0.66 | 3.00 | 3.46 | | .00 | 2.00 | 2.00 | | 0.0300 | 0.55 | 3.00 | 5.03 | | .00 | 2.00 | 2.00 | | 0.0300 | 0.59 | 3.00 | 4.25 | | .00 | 2.00 | 2.00 | | 0.0300 | 0.64 | 3.00 | 3.71 | | .00 | 2.00 | 2.00 | | 0.0100 | 0.75 | 4.00 | 3.58 | | .00 | 2.00 | 2.00 | | 0.0100 | 0.81 | 4.00 | 3.03 | | .00 | 2.00 | 2.00 | | 0.0100 | 0.87 | 4.00 | 2.64 | | .00 | 2.00 | 2.00 | | 0.0150 | 0.69 | 4.00 | 4.17 | | .00 | 2.00 | 2.00 | 0.025 | 0.0150 | 0.75 | 4.00 | 3.52 | | .00 | 2.00 | 2.00 | 0.030 | 0.0150 | 0.81 | 4.00 | 3.07 | | .00 | 2.00 | 2.00 | 0.020 | 0.0200 | 0.66 | 4.00 | 4.64 | | .00 | 2.00 | 2.00 | 0.025 | 0.0200 | 0.71 | 4.00 | 3.93 | | .00 | 2.00 | 2.00 | 0.030 | 0.0200 | 0.76 | 4.00 | 3.42 | | .00 | 2.00 | 2.00 | 0.020 | 0.0250 | 0.63 | 4.00 | 5.05 | | .00 | 2.00 | 2.00 | 0.025 | 0.0250 | 0.68 | 4.00 | 4.27 | | .00 | 2.00 | 2.00 | | 0.0250 | 0.73 | 4.00 | 3.72 | | .00 | 2.00 | 2.00 | | 0.0300 | 0.61 | 4.00 | 5.40 | | 00 | 2.00 | 2.00 | | 0.0300 | 0.66 | 4.00 | 4.57 | | 00 | 2.00 | 2.00 | | 0.0300 | 0.71 | 4.00 | 3.99 | | .00 | 2.00 | 2.00 | | 0.0100 | 0.81 | 5.00 | 3.78 | | .00 | 2.00 | 2.00 | | 0.0100 | 0.88 | 5.00 | 3.20 | | .00 | 2.00 | 2.00 | | 0.0100 | 0.95 | 5.00 | 2.79 | | .00 | 2.00 | 2.00 | | 0.0150 | 0.75 | 5.00 | 4.41 | | ,00 | 2.00 | 2.00 | | 0.0150 | 0.82 | 5.00 | 3.73 | | .00 | 2.00 | 2.00 | | 0.0150 | 0.88 | 5.00 | 3.25 | | .00 | 2.00 | 2.00 | | 0.0200 | 0.71 | 5.00 | 4.91 | | .00 | 2.00 | 2.00 | | 0.0200 | 0.78 | 5.00 | 4.15 | | . 00 | 2.00 | 2.00 | | 0.0200 | 0.83 | 5.00 | 3.62 | | . 00 | 2.00 | 2.00 | | 0.0250 | 0.68 | 5.00 | 5.34 | | .00 | 2.00 | 2.00 | | 0.0250 | 0.74 | 5.00 | 4.51 | | . 00 | 2.00 | 2.00 | | 0.0250 | 0.80 | 5.00 | 3.94 | | . 00 | 2.00 | 2.00 | | 0.0300 | 0.66 | 5.00 | 5 .71 | | . 00 | 2.00 | 2.00 | | 0.0300 | 0.72 | 5.00 | 4.83 | | 00 | 2.00 | 2.00 | | 0.0300 | 0.77 | 5.00 | 4.22 | | 00 | 2.00 | 2.00 | | 0.0100 | 0.87 | 6.00 | 3.96 | | 00 | 2.00 | 2.00 | | 0.0100 | 0.95 | 6.00 | 3.35 | | 00 | 2.00 | 2.00 | | 0.0100 | 1.01 | 6.00 | 2.92 | | 00 | 2.00 | 2.00 | | 0.0150 | 0.81 | 6.00 | 4.61 | | 00 | 2.00 | 2.00 | 0.025 | 0.0150 | 0.88 | 6.00 | 3.90 | | A SECTION AND | | | | VARIABLE | | VARIABLE | COMPUTED | |---|-----------------|------------------|-----------------|------------|------------------------|-----------------------------|-------------------| | ottom
idth
It | Z-Left
(H:V) | Z-Right
(H:V) | Mannings
'n' | | Channel
Depth
ft | Channel
Discharge
cfs | Velocity
e fps | | .00 | 2.00 | 2.00 | 0.030 |
0.0150 | 0.94 | 6.00 | 3.40 | | .00 | 2.00 | 2.00 | | 0.0200 | 0.76 | 6.00 | 5.14 | | .00 | 2.00 | 2.00 | | 0.0200 | 0.83 | 6.00 | 4.34 | | .00 | 2.00 | 2.00 | | 0.0200 | 0.89 | 6.00 | 3.79 | | .00 | 2.00 | 2.00 | | 0.0250 | 0.73 | 6.00 | 5.58 | | .00 | 2.00 | 2.00 | | 0.0250 | 0.80 | 6.00 | 4.72 | | .00 | 2.00 | 2.00 | | 0.0250 | 0.85 | 6.00 | 4.12 | | .00 | 2.00 | 2.00 | | 0.0300 | 0.71 | 6.00 | 5.98 | | .00 | 2.00 | 2.00 | | 0.0300 | 0.77 | 6.00 | 5.06 | | .00 | 2.00 | 2.00 | | 0.0300 | 0.82 | 6.00 | 4.41 | | .00 | 2.00 | 2.00 | 0.020 | 0.0100 | 0.92 | 7.00 | 4.12 | | .00 | 2.00 | 2.00 | 0.025 | 0.0100 | 1.00 | 7.00 | 3.48 | | . 00 | 2.00 | 2.00 | | 0.0100 | 1.07 | 7.00 | 3.04 | | .00 | 2.00 | 2.00 | 0.020 | 0.0150 | 0.85 | 7.00 | 4.79 | | .00 | 2.00 | 2.00 | 0.025 | 0.0150 | 0.93 | 7.00 | 4.05 | | .00 | 2.00 | 2.00 | 0.030 | 0.0150 | 0.99 | 7.00 | 3.54 | | .00 | 2.00 | 2.00 | 0.020 | 0.0200 | 0.81 | 7.00 | 5.34 | | .00 | 2.00 | 2.00 | 0.025 | 0.0200 | 0.88 | 7.00 | 4.52 | | 00 | 2.00 | 2.00 | 0.030 | 0.0200 | 0.94 | 7.00 | 3.94 | | 00 | 2.00 | 2.00 | 0.020 | 0.0250 | 0.78 | 7.00 | 5.80 | | 7.00 | 2.00 | 2.00 | 0.025 | 0.0250 | 0.84 | 7.00 | 4.91 | | .00 | 2.00 | 2.00 | 0.030 | 0.0250 | 0.90 | 7.00 | 4.28 | | .00 | 2.00 | 2.00 | 0.020 | 0.0300 | 0.75 | 7.00 | 6.21 | | .00 | 2.00 | 2.00 | | 0.0300 | 0.82 | 7.00 | 5.26 | | .00 | 2.00 | 2.00 | | 0.0300 | 0.87 | 7.00 | 4.59 | | .00 | 2.00 | 2.00 | | 0.0100
 0.97 | 8.00 | 4.26 | | .00 | 2.00 | 2.00 | | 0.0100 | 1.05 | 8.00 | 3.60 | | .00 | 2.00 | 2.00 | | 0.0100 | 1.13 | 8.00 | 3.14 | | .00 | 2.00 | 2.00 | | 0.0150 | 0.90 | 8.00 | 4.96 | | .00 | 2.00 | 2.00 | | 0.0150 | 0.98 | 8.00 | 4.19 | | .00 | 2.00 | 2.00 | | 0.0150 | 1.05 | 8.00 | 3.66 | | .00 | 2.00 | 2.00 | | 0.0200 | 0.85 | 8.00 | 5.52 | | .00 | 2.00 | 2.00 | | 0.0200 | 0.93 | 8.00 | 4.67 | | .00 | 2.00 | 2.00 | 0.030 | 0.0200 | 0.99 | 8.00 | 4.07 | | .00 | 2.00 | 2.00 | 0.020 | 0.0250 | 0.82 | 8.00 | 6.00 | | .00 | 2.00 | 2.00 | 0.025 | 0.0250 | 0.89 | 8.00 | 5.08 | | .00 | 2.00 | 2.00 | 0.030 | 0.0250 | 0.95 | 8.00 | 4.43 | | .00 | 2.00 | 2.00 | 0.020 | 0.0300 | 0.79 | 8.00 | 6.43 | 0.0300 0.0300 0.86 0.92 8.00 8.00 5.44 4.74 0.025 0.030 .00 .00 2.00 2.00 2.00 2.00 | VARIABLE VARIABLE | COMPUTED | VARIABLE | COMPUTED | |-------------------|----------|----------|----------| |-------------------|----------|----------|----------| | | | | ======= | ======== | ======== | ======== | ======= | |---------------|-----------------|------------------|-----------------|------------------|------------------|------------------------|----------------| | ottom
Edth | Z-Left
(H:V) | Z-Right
(H:V) | Mannings
'n' | Channel
Slope | Channel
Depth | Channel V
Discharge | elocity
fps | | Ξt | | | | ft/ft | ft | cfs | • | | ======= | | | | | | ========= | ======== | | .00 | 2.00 | 2.00 | 0.020 | 0.0100 | 1.01 | 9.00 | 4.38 | | .00 | 2.00 | 2.00 | | 0.0100 | 1.10 | 9.00 | 3.71 | | .00 | 2.00 | 2.00 | | 0.0100 | 1.18 | 9.00 | 3.23 | | . 00 | 2.00 | 2.00 | | 0.0150 | 0.94 | 9.00 | 5.10 | | .00 | 2.00 | 2.00 | | 0.0150 | 1.02 | 9.00 | 4.32 | | .00 | 2.00 | 2.00 | | 0.0150 | 1.09 | 9.00 | 3.77 | | .00 | 2.00 | 2.00 | 0.020 | 0.0200 | 0.89 | 9.00 | 5.68 | | .00 | 2.00 | 2.00 | 0.025 | 0.0200 | 0.97 | 9.00 | 4.81 | | .00 | 2.00 | 2.00 | | 0.0200 | 1.04 | 9.00 | 4.19 | | .00 | 2.00 | 2.00 | | 0.0250 | 0.85 | 9.00 | 6.18 | | .00 | 2.00 | 2.00 | | 0.0250 | 0.93 | 9.00 | 5.23 | | .00 | 2.00 | 2.00 | | 0.0250 | 0.99 | 9.00 | 4.56 | | .00 | 2.00 | 2.00 | | 0.0300 | 0.82 | 9.00 | 6.62 | | .00 | 2.00 | 2.00 | | 0.0300 | 0.90 | 9.00 | 5.60 | | .00 | 2.00 | 2.00 | | 0.0300 | 0.96 | 9.00 | 4.88 | | .00 | 2.00 | 2.00 | | 0.0100 | 1.05 | 10.00 | 4.50 | | .00 | 2.00 | 2.00 | | 0.0100 | 1.15 | 10.00 | 3.81 | | .00 | 2.00 | 2.00 | | 0.0100 | 1.23 | 10.00 | 3.32 | | 00 | 2.00 | 2.00 | | 0.0150 | 0.98 | 10.00 | 5.24 | | 00 | 2.00 | 2.00 | | 0.0150 | 1.06 | 10.00 | 4.43 | | .00 | 2.00 | 2.00 | | 0.0150 | 1.14 | 10.00 | 3.87 | | .00 | 2.00 | 2.00 | | 0.0200 | 0.93 | 10.00 | 5.84 | | .00 | 2.00 | 2.00 | | 0.0200 | 1.01 | 10.00 | 4.94 | | .00 | 2.00 | 2.00 | | 0.0200 | 1.08 | 10.00 | 4.31 | | .00 | 2.00 | 2.00 | | 0.0250 | 0.89 | 10.00 | 6.35 | | .00 | 2.00 | 2.00 | | 0.0250 | 0.97 | 10.00 | 5.37 | | .00 | 2.00 | 2.00 | | 0.0250 | 1.03 | 10.00 | 4.68 | | .00 | 2.00 | 2.00 | | 0.0300 | 0.86 | 10.00 | 6.79 | | .00 | 2.00 | 2.00 | | 0.0300 | 0.93 | 10.00 | 5.75 | | .00 | 2.00 | 2.00 | 0.030 | 0.0300 | 1.00 | 10.00 | 5.01 | # ACCESS ROAD DRAINAGE DITCH # Trapezoidal Channel Analysis & Design Open Channel - Uniform flow Worksheet Name: Mtn View LF, UT Description: LF Access Rd Solve For Depth Given Constant Data; | Bottom Width | 0.00 | |---------------|--------| | Z-Left | 2.00 | | Z-Right | 2.00 | | Channel Slope | 0.0600 | | able Input Data | Minimum | Maximum | Increment By | |---|---------|---------|--------------| | :====================================== | ====== | ====== | ========= | | nings 'n' | 0.015 | 0.020 | 0.005 | | nnel Discharge | 1.00 | 10.00 | 1.00 | | | | | VARIABL | | | VARIABLE | | | |-------|---------|---------|---------|-----------|---------|-----------|-----------|---| | ottom | Z-Left | Z-Right | | s Channel | | | Velocity | | | idth | (H:V) | (H:V) | 'n' | Slope | Depth | Discharge | _ | | | Et | (027.17 | (-51.1) | | ft/ft | ft | cfs | | | | | | ======= | | ======= | ======= | | ========= | = | | .00 | 2.00 | 2.00 | 0.015 | 0.0600 | 0.29 | 1.00 | 6.15 | | | .00 | 2.00 | 2.00 | 0.020 | 0.0600 | 0.32 | 1.00 | 4.96 | | | .00 | 2.00 | 2.00 | 0.015 | 0.0600 | 0.37 | 2.00 | 7.31 | | | .00 | 2.00 | 2.00 | 0.020 | 0.0600 | 0.41 | 2.00 | 5.89 | | | .00 | 2.00 | 2.00 | 0.015 | 0.0600 | 0.43 | 3.00 | 8.09 | | | .00 | 2.00 | 2.00 | 0.020 | 0.0600 | 0.48 | 3.00 | 6.52 | | | .00 | 2.00 | 2.00 | 0.015 | 0.0600 | 0.48 | 4.00 | 8.69 | | | .00 | 2.00 | 2.00 | 0.020 | 0.0600 | 0.53 | 4.00 | 7.01 | | | .00 | 2.00 | 2.00 | 0.015 | 0.0600 | 0.52 | 5.00 | 9.19 | | | .00 | 2.00 | 2.00 | 0.020 | 0.0600 | 0.58 | 5.00 | 7.41 | | | .00 | 2.00 | 2.00 | 0.015 | 0.0600 | 0.56 | 6.00 | 9.62 | | | .00 | 2.00 | 2.00 | 0.020 | 0.0600 | 0.62 | 6.00 | 7.76 | | | .00 | 2.00 | 2.00 | 0.015 | 0.0600 | 0.59 | 7.00 | 10.00 | | | .00 | 2.00 | 2.00 | 0.020 | 0.0600 | 0.66 | 7.00 | 8.06 | | | .00 | 2.00 | 2.00 | 0.015 | 0.0600 | 0.62 | 8.00 | 10.34 | | | .00 | 2.00 | 2.00 | 0.020 | 0.0600 | 0.69 | 8.00 | 8.33 | | | .00 | 2.00 | 2.00 | 0.015 | 0.0600 | 0.65 | 9.00 | 10.65 | | | .00 | 2.00 | 2.00 | 0.020 | 0.0600 | 0.72 | 9.00 | 8.58 | | | 00 | 2.00 | 2.00 | 0.015 | 0.0600 | 0.68 | 10.00 | 10.93 | | | 00 | 2.00 | 2.00 | 0.020 | 0.0600 | 0.75 | 10.00 | 8.81 | | # PERIMETER BENCH DRAINAGE DITCH ## Trapezoidal Channel Analysis & Design Open Channel - Uniform flow Worksheet Name: Mtn View LF, UT Description: LF Perimeter Ditch Solve For Depth Given Constant Data; | able Input Data | Minimum | Maximum | Increment By | |---|---------|---------|--------------| | ======================================= | ====== | ====== | ========== | | tom Width | 1.00 | 2.00 | 1.00 | | nings 'n' | 0.020 | 0.025 | 0.005 | | nnel Slope | 0.0050 | 0.0200 | 0.0050 | | nnel Discharge | 10.00 | 30.00 | 2.00 | | IABLI | | | | | | VARIABLE | | |--------------|-----------------|------------------|-----------------|---------------------------|------------------------|-----------------------------|-----------------| | ottom
dth | Z-Left
(H:V) | Z-Right
(H:V) | Mannings
'n' | Channel
Slope
ft/ft | Channel
Depth
ft | Channel
Discharge
cfs | Velocity
fps | | .00 | 2.00 | 2.00 | | 0.0050 | 0.98 | 10.00 | 3.47 | | .00 | 2.00 | 2.00 | 0.020 | 0.0050 | 0.81 | 10.00 | 3.41 | | .00 | 2.00 | 2.00 | 0.025 | 0.0050 | 1.08 | 10.00 | 2.94 | | .00 | 2.00 | 2.00 | 0.025 | 0.0050 | 0.91 | 10.00 | 2.89 | | .00 | 2.00 | 2.00 | 0.020 | 0.0100 | 0.83 | 10.00 | 4.49 | | .00 | 2.00 | 2.00 | 0.020 | 0.0100 | 0.68 | 10.00 | 4.38 | | .00 | 2.00 | 2.00 | 0.025 | 0.0100 | 0.92 | 10.00 | 3.81 | | .00 | 2.00 | 2.00 | 0.025 | 0.0100 | 0.76 | 10.00 | 3.73 | | .00 | 2.00 | 2.00 | 0.020 | 0.0150 | 0.76 | 10.00 | 5.23 | | .00 | 2.00 | 2.00 | 0.020 | 0.0150 | 0.61 | 10.00 | 5.07 | | .00 | 2.00 | 2.00 | 0.025 | 0.0150 | 0.84 | 10.00 | 4.43 | | .00 | 2.00 | 2.00 | 0.025 | 0.0150 | 0.69 | 10.00 | 4.32 | | .00 | 2.00 | 2.00 | 0.020 | 0.0200 | 0.71 | 10.00 | 5.82 | | .00 | 2.00 | 2.00 | 0.020 | 0.0200 | 0.57 | 10.00 | 5.63 | | .00 | 2.00 | 2.00 | 0.025 | 0.0200 | 0.79 | 10.00 | 4.93 | | .00 | 2.00 | 2.00 | 0.025 | 0.0200 | 0.64 | 10.00 | 4.79 | | .00 | 2.00 | 2.00 | 0.020 | 0.0050 | 1.06 | 12.00 | 3.64 | | .00 | 2.00 | 2.00 | 0.020 | 0.0050 | 0.89 | 12.00 | 3.58 | | 00 | 2.00 | 2.00 | 0.025 | 0.0050 | 1.17 | 12.00 | 3.08 | | b o | 2.00 | 2.00 | 0.025 | 0.0050 | 0.99 | 12.00 | 3.04 | | .00 | 2.00 | 2.00 | 0.020 | 0.0100 | 0.91 | 12.00 | 4.71 | | .00 | 2.00 | 2.00 | 0.020 | 0.0100 | 0.75 | 12.00 | 4.61 | | .00 | 2.00 | 2.00 | 0.025 | 0.0100 | 1.00 | 12.00 | 3.99 | | .00 | 2.00 | 2.00 | 0.025 | 0.0100 | 0.84 | 12.00 | 3.91 | | .00 | 2.00 | 2.00 | | 0.0150 | 0.83 | 12.00 | 5.48 | | .00 | 2.00 | 2.00 | 0.020 | 0.0150 | 0.67 | 12.00 | 5.34 | | .00 | 2.00 | 2.00 | 0.025 | 0.0150 | 0.91 | 12.00 | 4.64 | | .00 | 2.00 | 2.00 | 0.025 | 0.0150 | 0.75 | 12.00 | 4.54 | | .00 | 2.00 | 2.00 | 0.020 | 0.0200 | 0.77 | 12.00 | 6.09 | | .00 | 2.00 | 2.00 | 0.020 | 0.0200 | 0.62 | 12.00 | 5.92 | | .00 | 2.00 | 2.00 | 0.025 | 0.0200 | 0.86 | 12.00 | 5.16 | | .00 | 2.00 | 2.00 | 0.025 | 0.0200 | 0.70 | 12.00 | 5.04 | | .00 | 2.00 | 2.00 | 0.020 | 0.0050 | 1.13 | 14.00 | 3.78 | | .00 | 2.00 | 2.00 | 0.020 | 0.0050 | 0.96 | 14.00 | 3.73 | | .00 | 2.00 | 2.00 | 0.025 | 0.0050 | 1.25 | 14.00 | 3.20 | | .00 | 2.00 | 2.00 | 0.025 | 0.0050 | 1.07 | 14.00 | 3.16 | | .00 | 2.00 | 2.00 | 0.020 | 0.0100 | 0.97 | 14.00 | 4.90 | | .00 | 2.00 | 2.00 | 0.020 | 0.0100 | 0.81 | 14.00 | 4.80 | | .00 | 2.00 | 2.00 | 0.025 | 0.0100 | 1.07 | 14.00 | 4.14 | | .00 | 2.00 | 2.00 | | 0.0100 | 0.90 | 14.00 | 4.08 | ### VARIABLE VARIABLE COMPUTED VARIABLE COMPUTED RIABLE ======= ottom Z-Left Z-Right Mannings Channel Channel Channel Velocity idth (H:V) (H:V) 'n' Slope Depth Discharge ft/ft ft ft cfs .00 2.00 2.00 0.020 0.0150 0.89 14.00 5.70 .00 2.00 2.00 0.020 0.0150 0.73 14.00 5.57 .00 2.00 2.00 0.025 0.0150 0.98 14.00 4.82 .00 2.00 2.00 0.025 0.81 0.0150 14.00 4.73 .00 2.00 2.00 0.020 0.0200 0.83 14.00 6.34 6.18 .00 2.00 2.00 0.020 0.0200 0.68 14.00 .00 2.00 2.00 0.025 0.0200 0.92 14.00 5.37 .00 2.00 2.00 0.025 0.0200 0.76 14.00 5.26 .00 2.00 2.00 0.020 0.0050 1.20 16.00 3.91 .00 2.00 2.00 0.020 0.0050 1.02 16.00 3.86 .00 2.00 2.00 0.025 0.0050 1.33 16.00 3.31 .00 2.00 2.00 0.025 0.0050 1.14 16.00 3.28 .00 2.00 2.00 0.020 0.0100 1.03 16.00 5.06 .00 2.00 2.00 0.020 0.0100 0.86 16.00 4.98 2.00 .00 2.00 0.025 0.0100 1.14 16.00 4.29 .00 2.00 2.00 0.025 0.0100 0.96 16.00 4.23 .00 2.00 0.020 2.00 0.0150 0.94 16.00 5.89 .00 2.00 2.00 0.020 0.0150 0.78 16.00 5.77 00 2.00 2.00 0.025 0.0150 1.04 16.00 4.99 0.0150 D0 2.00 2.00 0.025 0.87 16.00 4.91 .00 2.00 2.00 0.020 0.0200 0.88 16.00 6.56 .00 2.00 2.00 0.020 0.0200 0.72 16.00 6.41 .00 2.00 2.00 0.025 0.98 0.0200 16.00 5.55 0.0200 .00 2.00 2.00 0.025 0.81 16.00 5.45 .00 2.00 2.00 0.020 0.0050 1.27 18.00 4.03 .00 2.00 2.00 0.020 0.0050 1.08 18.00 3.98 00 2.00 2.00 0.025 1.39 0.0050 18.00 3.41 00 2.00 2.00 0.025 0.0050
1.21 18.00 3.38 00 2.00 2.00 0.020 0.0100 1.09 18.00 5.22 00 2.00 2.00 0.020 0.91 0.0100 18.00 5.14 00 2.00 2.00 0.025 0.0100 1.20 18.00 4.42 90 2.00 2.00 0.025 0.0100 1.02 18.00 4.36 00 2.00 2.00 0.020 0.99 0.0150 18.00 6.07 00 2.00 2.00 0.020 0.83 0.0150 18.00 5.96 00 2.00 2.00 0.025 0.0150 1.10 18.00 5.14 00 2.00 2.00 0.025 0.0150 0.92 18.00 5.06 00 2.00 2.00 0.020 0.93 0.0200 18.00 6.76 00 2.00 2.00 0.020 0.0200 0.77 18.00 6.62 Open Channel Flow Module, Version 3.21 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 0.0200 0.0200 1.03 0.86 18.00 18.00 5.72 5.62 0.025 0.025 2.00 2.00 00 00 2.00 2.00 | RIABLE | | | | VARIABLE | | | COMPUTED | |---------------------|-----------------|------------------|-----------------|---------------------|------------------------|-----------------------------|-----------------| | ottom
idth
Et | Z-Left
(H:V) | Z-Right
(H:V) | Mannings
'n' | Channel Slope ft/ft | Channel
Depth
ft | Channel
Discharge
cfs | Velocity
fps | | .00 | 2.00 | 2.00 | | 0.0050 | 1.33 | 20.00 | 4.14 | | .00 | 2.00 | 2.00 | 0.020 | 0.0050 | 1.14 | 20.00 | 4.09 | | .00 | 2.00 | 2.00 | 0.025 | 0.0050 | 1.46 | 20.00 | 3.50 | | .00 | 2.00 | 2.00 | 0.025 | 0.0050 | 1.27 | 20.00 | 3.47 | | .00 | 2.00 | 2.00 | 0.020 | 0.0100 | 1.14 | 20.00 | 5.36 | | .00 | 2.00 | 2.00 | 0.020 | 0.0100 | 0.96 | 20.00 | 5.28 | | .00 | 2.00 | 2.00 | 0.025 | 0.0100 | 1.26 | 20.00 | 4.54 | | .00 | 2.00 | 2.00 | 0.025 | 0.0100 | 1.07 | 20.00 | 4.48 | | .00 | 2.00 | 2.00 | 0.020 | 0.0150 | 1.04 | 20.00 | 6.24 | | .00 | 2.00 | 2.00 | 0.020 | 0.0150 | 0.87 | 20.00 | 6.13 | | .00 | 2.00 | 2.00 | 0.025 | 0.0150 | 1.15 | 20.00 | 5.28 | | .00 | 2.00 | 2.00 | 0.025 | 0.0150 | 0.97 | 20.00 | 5.21 | | .00 | 2.00 | 2.00 | 0.020 | 0.0200 | 0.98 | 20.00 | 6.94 | | .00 | 2.00 | 2.00 | 0.020 | 0.0200 | 0.81 | 20.00 | 6.81 | | .00 | 2.00 | 2.00 | 0.025 | 0.0200 | 1.08 | 20.00 | 5.88 | | .00 | 2.00 | 2.00 | 0.025 | 0.0200 | 0.91 | 20.00 | 5.79 | | .00 | 2.00 | 2.00 | 0.020 | 0.0050 | 1.38 | 22.00 | 4.24 | | .00 | 2.00 | 2.00 | 0.020 | 0.0050 | 1.19 | 22.00 | 4.20 | | .00 | 2.00 | 2.00 | 0.025 | 0.0050 | 1.52 | 22.00 | 3.58 | | 00 | 2.00 | 2.00 | 0.025 | 0.0050 | 1.33 | 22.00 | 3.56 | | 00 | 2.00 | 2.00 | 0.020 | 0.0100 | 1.19 | 22.00 | 5.49 | | .00 | 2.00 | 2.00 | 0.020 | 0.0100 | 1.01 | 22.00 | 5.42 | | .00 | 2.00 | 2.00 | 0.025 | 0.0100 | 1.31 | 22.00 | 4.65 | | .00 | 2.00 | 2.00 | 0.025 | 0.0100 | 1.13 | 22.00 | 4.60 | | .00 | 2.00 | 2.00 | 0.020 | 0.0150 | 1.09 | 22.00 | 6.39 | | .00 | 2.00 | 2.00 | 0.020 | 0.0150 | 0.91 | 22.00 | 6.29 | | .00 | 2.00 | 2.00 | 0.025 | 0.0150 | 1.20 | 22.00 | 5.41 | | .00 | 2.00 | 2.00 | 0.025 | 0.0150 | 1.02 | 22.00 | 5.34 | | .00 | 2.00 | 2.00 | 0.020 | 0.0200 | 1.02 | 22.00 | 7.11 | | .00 | 2.00 | 2.00 | | 0.0200 | 0.85 | 22.00 | 6.99 | | .00 | 2.00 | 2.00 | 0.025 | 0.0200 | 1.12 | 22.00 | 6.02 | | .00 | 2.00 | 2.00 | | 0.0200 | 0.95 | 22.00 | 5.93 | | .00 | 2.00 | 2.00 | 0.020 | 0.0050 | 1.43 | 24.00 | 4.33 | | .00 | 2.00 | 2.00 | 0.020 | 0.0050 | 1.25 | 24.00 | 4.29 | | .00 | 2.00 | 2.00 | 0.025 | 0.0050 | 1.58 | 2400 | 3.66 | | .00 | 2.00 | 2.00 | 0.025 | 0.0050 | 1.38 | 24.00 | 3.64 | | .00 | 2.00 | 2.00 | 0.020 | 0.0100 | 1.23 | 24.00 | 5.61 | | .00 | 2.00 | 2.00 | 0.020 | 0.0100 | 1.05 | 24.00 | 5.55 | | .00 | 2.00 | 2.00 | 0.025 | 0.0100 | 1.36 | 24.00 | 4.75 | | ,00 | 2.00 | 2.00 | 0.025 | 0.0100 | 1.17 | 24.00 | 4.70 | | RIABLE | | | | | | VARIABLE | COMPUTED | |---------------|-----------------|------------------|-----------------|------------|------------------------|----------|-------------------| | ottom
idth | Z-Left
(H:V) | Z-Right
(H:V) | Mannings
'n' | | Channel
Depth
ft | · | Velocity
e fps | | .00 | 2.00 | 2.00 | |
0.0150 | 1.13 | 24.00 | 6.53 | | .00 | 2.00 | 2.00 | 0.020 | 0.0150 | 0.95 | 24.00 | 6.44 | | .00 | 2.00 | 2.00 | | 0.0150 | 1.24 | 24.00 | 5.53 | | .00 | 2.00 | 2.00 | | 0.0150 | 1.06 | 24.00 | 5.46 | | .00 | 2.00 | 2.00 | 0.020 | 0.0200 | 1.06 | 24.00 | 7.27 | | .00 | 2.00 | 2.00 | | 0.0200 | 0.89 | 24.00 | 7.15 | | .00 | 2.00 | 2.00 | | 0.0200 | 1.17 | 24.00 | 6.15 | | . 00 | 2.00 | 2.00 | | 0.0200 | 0.99 | 24.00 | 6.07 | | .00 | 2.00 | 2.00 | | 0.0050 | 1.48 | 26.00 | 4.42 | | . 00 | 2.00 | 2.00 | | 0.0050 | 1.29 | 26.00 | 4.38 | | .00 | 2.00 | 2.00 | | 0.0050 | 1.63 | 26.00 | 3.74 | | .00 | 2.00 | 2.00 | | 0.0050 | 1.44 | 26.00 | 3.71 | | .00 | 2.00 | 2.00 | | 0.0100 | 1.28 | 26.00 | 5.73 | | .00 | 2.00 | 2.00 | | 0.0100 | 1.10 | 26.00 | 5.66, | | . 00 | 2.00 | 2.00 | | 0.0100 | 1.41 | 26.00 | 4.84 | | .00 | 2.00 | 2.00 | | 0.0100 | 1.22 | 26.00 | 4.80 | | .00 | 2.00 | 2.00 | | 0.0150 | 1.17 | 26.00 | 6.66 | | .00 | 2.00 | 2.00 | | 0.0150 | 0.99 | 26.00 | 6.58 | | . 00 | 2.00 | 2.00 | | 0.0150 | 1.29 | 26.00 | 5.64 | | 00 | 2.00 | 2.00 | | 0.0150 | 1.11 | 26.00 | 5.58 | | 0.0 | 2.00 | 2.00 | | 0.0200 | 1.10 | 26.00 | 7.42 | | .00 | 2.00 | 2.00 | | 0.0200 | 0.92 | 26.00 | 7.31 | | .00 | 2.00 | 2.00 | | 0.0200 | 1.21 | 26.00 | 6.28 | | .00 | 2.00 | 2.00 | | 0.0200 | 1.03 | 26.00 | 6.20 | | . 00 | 2.00 | 2.00 | | 0.0050 | 1.53 | 28.00 | 4.50 | | .00 | 2.00 | 2.00 | | 0.0050 | 1.34 | 28.00 | 4.47 | | .00 | 2.00 | 2.00 | | 0.0050 | 1.68 | 28.00 | 3.81 | | . 00 | 2.00 | 2.00 | | 0.0050 | 1.49 | 28.00 | 3.79 | | .00 | 2.00 | 2.00 | | 0.0100 | 1.32 | 28.00 | 5.83 | | . O O | 2.00 | 2.00 | | 0.0100 | 1.14 | 28.00 | 5.77 | | . 00 | 2.00 | 2.00 | 0.025 | 0.0100 | 1.45 | 28.00 | 4.94 | | , 00 | 2.00 | 2.00 | 0.025 | 0.0100 | 1.26 | 28.00 | 4.90 | | . 00 | 2.00 | 2.00 | 0.020 | 0.0150 | 1.21 | 28.00 | 6.79 | | .00 | 2.00 | 2.00 | 0.020 | 0.0150 | 1.03 | 28.00 | 6.71 | | .00 | 2.00 | 2.00 | 0.025 | 0.0150 | 1.33 | 28.00 | 5.74 | | .00 | 2.00 | 2.00 | 0.025 | 0.0150 | 1.15 | 28.00 | 5.69 | | . 0 0 | 2.00 | 2.00 | 0.020 | 0.0200 | 1.13 | 28.00 | 7.56 | | . 00 | 2.00 | 2.00 | 0.020 | 0.0200 | 0.96 | 28.00 | 7.45 | | .00 | 2.00 | 2.00 | 0.025 | 0.0200 | 1.25 | 28.00 | 6.40 | | . 00 | 2.00 | 2.00 | 0.025 | 0.0200 | 1.07 | 28.00 | 6.32 | ## RIABLE ### VARIABLE VARIABLE COMPUTED VARIABLE COMPUTED | | · - | | | | | | ~~~~~ | |--|--|--|--|--|--------------|----------------------------------|--| | ottom
.dth
.t | Z-Left
(H:V) | Z-Right
(H:V) | Manning
'n' | s Channel
Slope
ft/ft | Depth
ft | Discharge
cfs | | | 00
00
00
00
00
00
00
00
00
00 | 2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00 | 2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00 | 0.020
0.020
0.025
0.025
0.020
0.020
0.025
0.025
0.020
0.025
0.020
0.025 | 0.0050
0.0050
0.0050
0.0050
0.0100
0.0100
0.0100
0.0150
0.0150
0.0150
0.0150 | 1.38
1.73 | 30.00
30.00
30.00
30.00 | 4.58
4.55
3.87
3.85
5.94
5.88
5.02
4.98
6.91
6.83
5.85
5.79
7.69
7.59 | | .00 | 2.00 | 2.00 | 0.025
0.025 | 0.0200
0.0200 | 1.29
1.11 | 30.00 | 6.51
6.44 | # PIPE DOWNDRAIN AND CROSSDRAIN # Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Mt View LF, UT Description: Crossdrain/Downdrain Solve For Actual Depth Given Constant Data; | ıble Input Data | Minimum | Maximum | Increment By | |-----------------|---------|---------|--------------| | :2222222222 | ====== | ====== | ========= | |)e | 0.0500 | 0.1000 | 0.0100 | | charge | 1.00 | 5.00 | 1.00 | | | VARIABLE | | VARIABLE | COMPUTED | COMPUTED | COMPUTED | |--------------|------------------|----------------|--------------|--------------|---------------|--------------| | 7.3 | ======== | | | | | ======== | | .ameter | Channel | Mannings | Discharge | Depth | Velocity | Capacity | | ft | Slope | 'n' | cfs | Ēt | fps | Full | | | ft/ft | | | | _ | cfs | | :====== | | | | ======= | | | | 00 | 0.0500 | 0.024 | 1.00 | 0.33 | 4.47 | 4.32 | | 00 | 0.0600 | 0.024 | 1.00 | 0.31 | 4.77 | 4.73 | | 00 | 0.0700 | 0.024 | 1.00 | 0.30 | 5.05 | 5.11 | | 00 | 0.0800 | 0.024 | 1.00 | 0.29 | 5.29 | 5.46 | | 00 | 0.0900 | 0.024 | 1.00 | 0.28 | 5.52 | 5.79 | | L.00 | 0.1000 | 0.024 | 1.00 | 0.27 | 5.73 | 6.10 | | 1.00 | 0.1100 | 0.024 | 1.00 | 0.27 | 5.93 | 6.40 | | l.00 | 0.0500 | 0.024 | 2.00 | 0.48 | 5.39 | 4.32 | | 1.00 | 0.0600 | 0.024 | 2.00 | 0.45 | 5 <i>.7</i> 7 | 4.73 | | 1.00 | 0.0700 | 0.024 | 2.00 | 0.43 | 6.11 | 5.11 | | 1.00 | 0.0800 | 0.024 | 2.00 | 0.42 | 6.41 | 5.46 | | 1.00 | 0.0900 | 0.024 | 2.00 | 0.41 | 6.69 | 5.79 | | 1.00 | 0.1000 | 0.024 | 2.00 | 0.39 | 6.96 | 6.10 | | 1.00 | 0.1100 | 0.024 | 2.00 | 0.38 | 7.20 | 6.40 | | 1.00 | 0.0500 | 0.024 | 3.00 | 0.61 | 5.94 | 4.32 | | 1.00 | 0.0600 | 0.024 | 3.00 | 0.58 | 6.37 | 4.73 | | 1.00 | 0.0700 | 0.024 | 3.00 | 0.55 | 6.76 | 5.11 | | 1.00 | 0.0800 | 0.024 | 3.00 | 0.53 | 7.11 | 5.46 | | 1.00 | 0.0900 | 0.024 | 3.00 | 0.51 | 7.44 | 5.79 | | .00 | 0.1000 | 0.024 | 3.00 | 0.50 | 7.74 | 6.10 | | 1.00 | 0.1100 | 0.024 | 3.00 | 0.48 | 8.02 | 6.40 | | 1.00 | 0.0500 | 0.024 | 4.00 | 0.76 | 6.24 | 4.32 | | 1.00 | 0.0600 | 0.024 | 4.00
4.00 | 0.71
0.67 | 6.75
7.19 | 4.73 | | 1.00
1.00 | 0.0700
0.0800 | 0.024
0.024 | 4.00 | 0.64 | 7.19
7.59 | 5.11 | | 1.00
1.00 | 0.0900 | 0.024 | 4.00 | 0.64 | 7.59
7.95 | 5.46
5.79 | | 1.00 | 0.1000 | 0.024 | 4.00 | 0.51 | 8.29 | | | 1.00 | 0.1100 | 0.024 | 4.00 | 0.57 | 8.60 | 6.10
6.40 | | | to compute | | | 0.57 | 0.60 | 0.40 | | 1.00 | 0.0600 | 0.024 | 5.00 | 0.89 |
6.80 | 4.73 | | 1.00 | 0.0700 | 0.024 | 5.00 | 0.80 | 7.41 | 5.11 | | 1.00 | 0.0800 | 0.024 | 5.00 | 0.80 | 7.88 | 5.46 | | 1.00 | 0.0900 | 0.024 | 5.00 | 0.73 | 7.88
8.29 | 5.79 | | 1.00 | 0.1000 | 0.024 | 5.00 | 0.72 | 8.67 | 6.10 | | 1.00 | 0.1100 | 0.024 | 5.00 | 0.67 | 9.01 | | | 1.00 | 0.1100 | 0.024 | 5.00 | 0.07 | J.UI | 6.40 | # Circular Channel Analysis & Design Solved with Manning's Equation ### Open Channel - Uniform flow Worksheet Name: Mtn View LF, UT Description: Crossdrain/Downdrain Solve For Actual Depth Given Constant Data; | able Input Data | Minimum | Maximum | Increment By | |---|---------|---------|--------------| | ======================================= | ====== | ====== | | | рe | 0.0500 | 0.0800 | 0.0100 | | charge | 5.00 | 20.00 | 1.00 | | | VARIABLE | • | VARIABLE | | | COMPUTED | |--------------|---|----------------|------------------|--------------|--------------|---| | ameter
ft | | | Discharge
cfs | | | Capacity
Full
cfs | | - | ======================================= | | | ======= | | ======================================= | | 50 | 0.0500 | 0.024 | 5.00 | 0.65 | 6.77 | 12.72 | | 50 | 0.0600 | 0.024 | 5.00 | 0.62 | 7.24 | 13.94 | | 50 | 0.0700 | 0.024 | 5.00 | 0.60 | 7.66 | 15.05 | | 50 | 0.0800 | 0.024 | 5.00 | 0.57 | 8.04 | 16.09 | | 50 | 0.0500 | 0.024 | 6.00 | 0.72 | 7.09 | 12.72 | | 50 | 0.0600 | 0.024 | 6.00 | 0.69 | 7.59 | 13.94 | | 50 | 0.0700 | 0.024 | 6.00 | 0.66 | 8.04 | 15.05 | | 50 | 0.0800 | 0.024 | 6.00 | 0.63 | 8.44 | 16.09 | | 50 | 0.0500 | 0.024 | 7.00 | 0.79 | 7.37 | 12.72 | | 50 | 0.0600 | 0.024 | 7.00 | 0.75 | 7.90 | 13.94 | | 1.50 | 0.0700 | 0.024 | 7.00 | 0.72 | 8.36 | 15.05 | | 1.50 | 0.0800 | 0.024 | 7.00 | 0.69 | 8.79 | 16.09 | | 1.50 | 0.0500 | 0.024 | 8.00 | 0.86 | 7.61 | 12.72 | | 1.50 | 0.0600 | 0.024 | 8.00 | 0.81 | 8.16 | 13.94 | | 1.50 | 0.0700 | 0.024 | 8.00 | 0.78 | 8.65 | 15.05 | | L.50 | 0.0800 | 0.024 | 8.00 | 0.75 | 9.09 | 16.09 | | 1.50 | 0.0500 | 0.024 | 9.00 | 0.93 | 7.81 | 12.72 | | 1.50 | 0.0600 | 0.024 | 9.00 | 0.88 | 8.38 | 13.94 | | 1.50 | 0.0700 | 0.024 | 9.00 | 0.84 | 8.90 | 15.05 | | . 50 | 0.0800
0.0500 | 0.024
0.024 | 9.00 | 0.80 | 9.36 | 16.09 | | 1.50 | 0.0600 | 0.024 | 10.00 | 1.00
0.94 | 7.97 | 12.72 | | 1.50 | 0.0700 | 0.024 | 10.00
10.00 | 0.89 | 8.58
9.11 | 13.94 | | 1.50 | 0.0800 | 0.024 | 10.00 | 0.85 | 9.60 | 15.05
16.09 | | 1.50 | 0.0500 | 0.024 | 11.00 | 1.08 | 8.10 | 12.72 | | 1.50 | 0.0600 | 0.024 | 11.00 | 1.00 | 8.74 | 13.94 | | 1.50 | 0.0700 | 0.024 | 11.00 | 0.95 | 9.30 | 15.05 | | 1.50 | 0.0800 | 0.024 | 11.00 | 0.91 | 9.80 | 16.09 | | 1.50 | 0.0500 | 0.024 | 12.00 | 1.16 | 8.19 | 12.72 | | 1.50 | 0.0600 | 0.021 | 12.00 | 1.07 | 8.87 | 13.94 | | 1.50 | 0.0700 | 0.024 | 12.00 | 1.01 | 9.46 | 15.05 | | 1.50 | 0.0800 | 0.024 | 12.00 | 0.97 | 9.98 | 16.09 | | 1.50 | 0.0500 | 0.024 | 13.00 | 1.26 | 8.20 | 12.72 | | 1.50 | 0.0600 | 0.024 | 13.00 | 1.15 | 8.96 | 13.94 | | 1.50 | 0.0700 | 0.024 | 13.00 | 1.08 | 9.59 | 15.05 | | 1.50 | 0.0800 | 0.024 | 13.00 | 1.02 | 10.14 | 16.09 | | Unable | | this ins | | 1.02 | ~~ · - I | ±0.09 | | 1.50 | 0.0600 | 0.024 | 14.00 | 1.24 | 8.99 | 13.94 | | 1.50 | 0.0700 | 0.024 | 14.00 | 1.14 | 9.68 | 15.05 | | 1.50 | 0.0800 | 0.024 | 14.00 | 1.08 | 10.26 | 16.09 | | 1.50 | 9.0000 | J. UZI | T-7.00 | 4.00 | 10.20 | 10.03 | | | | | RIABLE | | | | | COMPUTED | | |---|--------|---------------|--------------|-------|-----|------------------|-------------|-----------------|-------------------------| | | £t | Ch
Sl
f | lope
t/ft | 'n' | | Discharge
cfs | Depth
ft | Velocity
fps | Capacity
Full
cfs | | | | | compute | | | stance. | | | | | | | | compute | | | | | | | | | | | 0700 | | | | 1.22 | 9.71 | 15.05 | | | | | 0800 | | | | 1.15 | 10.35 | 16.09 | | | Jnable | to | compute | this | ins | stance. | ٦. | | | | | Jnable | to | compute | this | ins | stance. | | | , | | | L.50 | 0. | 0700 | 0.024 | | 16.00 | 1.34 | 9.60 | 15.05 | | | 1.50 | | 0800 | | | | 1.22 | 10.38 | 16.09 | | | | | compute | | | | | | | | | | | compute | | | | | | | | | | | compute | | | | | | | | | 1.50 | | 0800 | 0.024 | | 17.00 | 1.32 | 10.29 | 16.09 | | | | | compute | | | | | | | | | | | compute | | | | | - | | | | | | compute | | | | | | | | | | | compute | | | | | | | | | | | compute | | | | | | | | | | | compute | | | | | | | | h | | | compute | | | | | | | | | | | compute | | | | - | | | | | | | compute | | | | | | | | | | | compute | | | | | | | | | | | compute | | | | | | | | | | | | | | | | | | # Circular Channel Analysis & Design Solved with Manning's Equation ### Open Channel - Uniform flow Worksheet Name: Mtn View LF, UT Description: Crossdrain/Downdrain Solve For Actual Depth Given Constant Data; | able Input Data | Minimum | Maximum | Increment By | |-----------------|---------|---------|--------------| | ***** | 222222 | ====== | ========== | | ре | 0.0500 | 0.0800 | 0.0100 | | charge | 15.00 | 30.00 | 1.00 | | 1 | | | | | | | | |-----|------------|------------------|----------------|----------------|--------------|---------------|----------------| | | | VARIABLE | = | VARIABLE | COMPUTED | COMPUTED | COMPUTED | | _ 6 | ameter | Channel | | Discharge | Depth | Velocity | Capacity | | | Et | Slope | 'n' | cfs | ft | fps | Full | | | | ft/ft | | • | | • | cfs | | = = | -===== | • | ======== | | ======= | ======== | | | 2. | .00 | 0.0500 | 0.024 | 15.00 | 1.06 | 8.92 | 27.40 | | | .00 | 0.0600 | 0.024 | 15.00 | 1.00 | 9.55 | 30.02 | | 2. | .00 | 0.0700 | 0.024 | 15.00 | 0.96 | 10.12 | 32.42 | | 2 | .00 | 0.0800 | 0.024 | 15.00 | 0.92 | 10.63 | 34.66 | | 3 | .00 | 0.0500 | 0.024 | 16.00 | 1.10 | 9.06 | 27.40 | | 3 | .00 | 0.0600 | 0.024 | 16.00 | 1.04 | 9.71 | 30.02 | | 3 | .00 | 0.0700 | 0.024 | 16.00 | 0.99 | 10.29 | 32.42 | | | .00 | 0.0800 | 0.024 | 16.00 | 0.95 | 10.81 | 34.66 | | | .00 | 0.0500 | 0.024 | 17.00 | 1.14 | 9.19 | 27.40 | | | .00 | 0.0600 | 0.024 | 17.00 | 1.08 | 9.85 | 30.02 | | | .00 | 0.0700 | 0.024 | 17.00 | 1.03 | 10.44 | 32.42 | | | .00 | 0.0800 | 0.024 | 17.00 | 0.99 | 10.98 | 34.66 | | | .00 | 0.0500 | 0.024 | 18.00 | 1.18 | 9.31 | 27.40 | | | .00 | 0.0600 | 0.024 | 18.00 | 1.12 | 9.99 | 30.02 | | | .00 | 0.0700 | 0.024 | 18.00 | 1.06 | 10.59 | 32.42 | | | .00 | 0.0800 | 0.024 | 18.00 | 1.02 | 11.14 | 34.66 | | | .00 | 0.0500 | 0.024 | 19.00 | 1.23 | 9.42 | 27.40 | | | .00
.00 | 0.0600 | 0.024 | 19.00 | 1.15 | 10.11 | 30.02 | | | .00 | 0.0700
0.0800 | 0.024
0.024 | 19.00 | 1.10 | 10.73 | 32.42 | | | .00 | 0.0500 | 0.024 | 19.00
20.00 | 1.06
1.27 | 11.29
9.52 | 34.66 | | | .00 | 0.0600 | 0.024 | 20.00 | 1.19 | 10.23 | 27.40
30.02 | | | .00 | 0.0000 | 0.024 | 20.00 | 1.14 | 10.23 | 32.42 | | | .00 | 0.0800 | 0.024 | 20.00 | 1.09 | 11.43 | 34.66 | | | .00 | 0.0500 | 0.024 | 21.00 | 1.31 | 9.61 | 27.40 | | | .00 | 0.0600 | 0.024 | 21.00 | 1.23 | 10.34 | 30.02 | | | .00 | 0.0700 | 0.024 | 21.00 | 1.17 | 10.98 | 32.42 | | | .00 | 0.0800 | 0.024 | 21.00 | 1.12 | 11.56 | 34.66 | | | .00 | 0.0500 | 0.024 | 22.00 | 1.36 | 9.70 | 27.40 | | | .00 | 0.0600 | 0.024 | 22.00 | 1.27 | 10.44 | 30.02 | | | .00 | 0.0700 | 0.024 | 22.00 | 1.21 | 11.09 | 32.42 | | | .00 | 0.0800 | 0.024 | 22.00 | 1.16 | 11.68 | 34.66 | | | .00 | 0.0500 | 0.024 | 23.00 | 1.40 | 9.77 | 27.40 | | | .00 | 0.0600 | 0.024 | 23.00 | 1.31 | 10.53 | 30.02 | | | .00 | 0.0700 | 0.024 | 23.00 | 1.24 | 11.20 | 32.42 | | | .00 | 0.0800 | 0.024 | 23.00 | 1.19 | 11.80 | 34.66 | | | .00 | 0.0500 | 0.024 | 24.00 | 1.45 | 9.83 | 27.40 | | 2 | .00 | 0.0600 | 0.024 | 24.00 | 1.35 | 10.61 | 30.02 | | 2 | .00 | 0.0700 | 0.024 | 24.00 | 1.28 | 11.30 | 32.42 | | 2 | .00 | 0.0800 | 0.024 | 24.00 | 1.22 | 11.91 | 34.66 | | | | | | | | | | | | VARIABLE | | VARIABLE | COMPUTED | COMPUTED | COMPUTED | |--------|----------------|----------|--------------------|----------|-----------------|-------------------------| | ft | Slope
ft/ft | 'n' | Discharge
cfs | ft | Velocity
fps | Capacity
Full
cfs | | 2.00 | 0.0500 | 0.024 | 25.00 | 1.50 | 9.89 | 27.40 | | 2.00 | 0.0600 | 0.024 | | 1.39 | 10.69 | 30.02 | | 2.00 | 0.0700 | 0.024 | 25.00 | 1.32 | 11.39 | 32.42 | | 3.00 | 0.0800 | 0.024 | 25.00 | 1.26 | 12.01 | 34.66 | | 2.00 | 0.0500 | 0.024 | 26.00 | 1.55 | 9.92 | 27.40 | | 2.00 | 0.0600 | 0.024 | 26.00 | 1.44 | 10.76 | 30.02 | | 2.00 | 0.0700 | 0.024 | 26.00 | 1.36 | 11.47 | 32.42 | | 2.00 | 0.0800 | 0.024 | 26.00 | 1.29 | 12.11 | 34.66 | | 2.00 | 0.0500 | 0.024 | 27.00 | 1.61 | 9.94 | 27.40 | | 2.00 | 0.0600 | 0.024 | 27.00 [°] | 1.48 | 10.81 | 30.02 | | 2.00 | 0.0700 | 0.024 | 27.00 | 1.39 | 11.55 | 32.42 | | 2.00 | 0.0800 | 0.024 | 27.00 | 1.33 | 12.20 | 34.66 | | 2.00 | 0.0500 | 0.024 | 28.00 | 1.68 | 9.93 | 27.40 | | 2.00 | 0.0600 | 0.024 | 28.00 | 1.53 | 10.86 | 30.02 | | 2.00 | 0.0700 | 0.024 | 28.00 | 1.43 | 11.61 | 32.42 | | 2.00 | 0.0800 | 0.024 | 28.00 | 1.36 | 12.28 | 34.66 | | 2.00 | 0.0500 | 0.024 | 29.00 | 1.77 | 9.85 | 27.40 | | 2.00 | 0.0600 | 0.024 | 29.00 | 1.58 | 10.88 | 30.02 | | 2.00 | 0.0700 | 0.024 | 29.00 | 1.48 | 11.67 | 32.42 | | 2.00 | 0.0800 | 0.024 | 29.00 | 1.40 | 12.35 | 34.66 | | Unable | to compute | this ins | stance. | | | | | 2.00 | 0.0600 | 0.024 | 30.00 | 1.64 | 10.89 | 30.02 | | 2.00 | 0.0700 | 0.024 | 30.00 | 1.52 | 11.72 | 32.42 | | 2.00 | 0.0800 | 0.024 | 30.00 | 1.44 | 12,42 | 34.66 | # Circular Channel Analysis & Design Solved with Manning's Equation ### Open Channel - Uniform flow Worksheet Name: Mtn View LF, UT Description: Crossdrain/Downdrain Solve For Actual Depth Given Constant Data; | able Input Data | Minimum | Maximum | Increment By | |---|---------|---------|---| | ======================================= | ====== | ====== | ======================================= | | рe | 0.0500 | 0.0800 | 0.0100 | | charge | 25.00 |
40.00 | 1.00 | | | VARIABLE | _ | VARIABLE | | | COMPUTED | |--------------|------------------|----------------|----------------|--------------|----------------|----------------| | ameter | Channel | | Discharge | | Velocity | Capacity | | ft | Slope | 'n | cfs | ft | fps | Full | | | ft/ft | | | | - | cfs | | :====== | | | ****** | | | | | 2.50 | 0.0500 | 0.024 | 25.00 | 1.25 | 10.14 | 49.68 | | 2.50 | 0.0600 | 0.024 | 25.00 | 1.19 | 10.85 | 54.42 | | 2.50 | 0.0700 | 0.024 | 25.00 | 1.14 | 11.49 | 58.78 | | 2.50 | 0.0800 | 0.024 | 25.00 | 1.10 | 12.07 | 62.84 | | 2.50 | 0.0500 | 0.024 | 26.00 | 1.28 | 10.24 | 49.68 | | 2.50 | 0.0600
0.0700 | 0.024
0.024 | 26.00
26.00 | 1.22 | 10.96 | 54.42 | | 2.50
2.50 | 0.0800 | 0.024 | 26.00 | 1.16
1.12 | 11.61
12.20 | 58.78
62.84 | | 2.50 | 0.0500 | 0.024 | 27.00 | 1.31 | 10.33 | 49.68 | | 2.50 | 0.0600 | 0.024 | 27.00 | 1.24 | 11.07 | 54.42 | | 2.50 | 0.0700 | 0.024 | 27.00 | 1.19 | 11.72 | 58.78 | | 2.50 | 0.0800 | 0.024 | 27.00 | 1.14 | 12.32 | 62.84 | | 2.50 | 0.0500 | 0.024 | 28.00 | 1.34 | 10.42 | 49.68 | | 2.50 | 0.0600 | 0.024 | 28.00 | 1.27 | 11.17 | 54.42 | | 2.50 | 0.0700 | 0.024 | 28.00 | 1.22 | 11.83 | 58.78 | | 2.50 | 0.0800 | 0.024 | | 1.17 | 12.43 | 62.84 | | 2.50 | 0.0500 | 0.024 | 29.00 | | 10.51 | 49.68 | | 2.50 | 0.0600 | 0.024 | 29.00 | 1.30 | 11.26 | 54.42 | | 2.50 | 0.0700 | 0.024 | 29.00 | 1.24 | 11.93 | 58.78 | | .50 | 0.0800 | 0.024 | 29.00 | 1.19 | 12.55 | 62.84 | | 2.50
2.50 | 0.0500
0.0600 | 0.024 | 30.00
30.00 | 1.40 | 10.59
11.36 | 49.68
54.42 | | 2.50 | 0.0700 | 0.024 | 30.00 | 1.32
1.27 | 12.04 | 58.78 | | 2.50 | 0.0800 | 0.024 | 30.00 | 1.22 | 12.65 | 62.84 | | 2.50 | 0.0500 | 0.024 | 31.00 | 1.43 | 10.68 | 49.68 | | 2.50 | 0.0600 | 0.024 | 31.00 | 1.35 | 11.45 | 54.42 | | 2.50 | 0.0700 | 0.024 | 31.00 | 1.29 | 12.13 | 58.78 | | 2.50 | 0.0800 | 0.024 | 31.00 | 1.24 | 12.76 | 62.84 | | 2.50 | 0.0500 | 0.024 | 32.00 | 1.46 | 10.75 | 49.68 | | 2.50 | 0.0600 | 0.024 | 32.00 | 1.38 | 11.53 | 54.42 | | 2.50 | 0.0700 | 0.024 | 32.00 | 1.31 | 12.23 | 58.78 | | 2.50 | 0.0800 | 0.024 | 32.00 | 1.26 | 12.86 | 62.84 | | 2.50 | 0.0500 | 0.024 | 33.00 | 1.49 | 10.83 | 49.68 | | 2.50 | 0.0600 | 0.024 | 33.00 | 1.40 | 11.62 | 54.42 | | 2.50 | 0.0700 | 0.024 | 33.00 | 1.34 | 12.32 | 58.78 | | 2.50 | 0.0800 | 0.024 | 33.00 | 1.29 | 12.96 | 62.84 | | 2.50 | 0.0500 | 0.024 | 34.00 | 1.52 | 10.90 | 49.68 | | 2.50 | 0.0600 | 0.024 | 34.00 | 1.43 | 11.70 | 54.42 | | 2.50 | 0.0700 | 0.024 | 34.00 | 1.36 | 12.41 | 58.78 | | 2.50 | 0.0800 | 0.024 | 34.00 | 1.31 | 13.05 | 62.84 | | ameter Ch | hannel M
lope
ft/ft
======== | 'n' | Discharge
cfs | Depth
ft | Velocity (| | |---|---|--|--|--|---|---| | | 0500 | | | | - - | Full
cfs | | 2.50 0. 2.50 0. 2.50 0. 2.50 0. 2.50 0. 2.50 0. 2.50 0. 2.50 0. 2.50 0. 2.50 0. 2.50 0. 2.50 0. 2.50 0. 2.50 0. 2.50 0. | .0600
.0700
.0800
.0500
.0600
.0700
.0800
.0500
.0700
.0800
.0500 | 0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024 | 35.00
35.00
35.00
35.00
36.00
36.00
36.00
37.00
37.00
37.00
37.00
38.00
38.00
38.00 | 1.55
1.46
1.39
1.33
1.58
1.48
1.41
1.36
1.61
1.51
1.64
1.54
1.46 | 10.97
11.77
12.49
13.15
11.03
11.85
12.58
13.24
11.09
11.92
12.66
13.32
11.15
11.99
12.73 | 49.68
54.42
58.78
62.84
49.68
54.42
58.78
62.84
49.68
54.42
58.78
62.84
49.68
54.42
58.78 | | 2.50 0.
2.50 0.
2.50 0.
2.50 0.
2.50 0.
2.50 0.
2.50 0.
2.50 0. | .0800
.0500
.0600
.0700 | 0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024 | 38.00
39.00
39.00
39.00
40.00
40.00
40.00
40.00 | 1.40
1.67
1.57
1.49
1.43
1.70
1.59
1.51 | 13.41
11.21
12.06
12.81
13.49
11.26
12.12
12.88
13.56 | 62.84
49.68
54.42
58.78
62.84
49.68
54.42
58.78
62.84 |